Skip to main content

Tools to fetch and visualize JUMP images

Project description

Table of Contents

Fetch, visualize and.or download images from the JUMP dataset.

Workflow

Workflow 1: Download all images for a given item and their controls

item_name = "MYT1"  # Item or Compound of interest - (GC)OI
# channels = ["bf"]  # Standard channels are ER, AGP, Mito DNA and RNA
channels = ["DNA"]  # Standard channels are ER, AGP, Mito DNA and RNA
corrections = ["Orig"]  # Can also be "Illum"
controls = True  # Fetch controls in plates alongside (GC)OI?

download_item_images(item_name, channels, corrections=corrections, controls=controls)

Workflow 2: get images from explicit metadata

Fetch one image for a given item and a control

from jump_portrait.fetch import get_jump_image, get_sample
from jump_portrait.save import download_item_images

sample = get_sample()

source, batch, plate, well, site, *rest = sample.row(0)
channel = "DNA"
correction = None # or "Illum"

img = get_jump_image(source, batch, plate, well, channel, site, correction)

Workflow 3: Fetch bright field channel Note that this is hacky and may not work for all sources.

from jump_portrait.fetch import get_jump_image, get_sample
from jump_portrait.save import download_item_images

sample = get_sample()

channel = "bf"
correction = None

source, batch, plate, well, site, *rest = sample.row(0)
img = get_jump_image(source, batch, plate, well, channel, site, correction)

Developer

First, we Locate the images produced to a given perturbation.

from jump_portrait.fetch import get_item_location_info

gene = "MYT1"

location_df = get_item_location_info(gene)
Returns a polars dataframe whose columns contain the metadata 
alongside path and file locations

#┌───────────┬───────────┬───────────┬───────────┬───┬───────────┬───────────┬───────────┬──────────┐
#│ Metadata_ ┆ Metadata_ ┆ Metadata_ ┆ Metadata_ ┆ … ┆ PathName_ ┆ Metadata_ ┆ Metadata_ ┆ standard │
#│ Source    ┆ Batch     ┆ Plate     ┆ Well      ┆   ┆ OrigRNA   ┆ PlateType ┆ JCP2022   ┆ _key     │
#│ ---       ┆ ---       ┆ ---       ┆ ---       ┆   ┆ ---       ┆ ---       ┆ ---       ┆ ---      │
#│ str       ┆ str       ┆ str       ┆ str       ┆   ┆ str       ┆ str       ┆ str       ┆ str      │
#╞═══════════╪═══════════╪═══════════╪═══════════╪═══╪═══════════╪═══════════╪═══════════╪══════════╡
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05       ┆ … ┆ s3://cell ┆ CRISPR    ┆ JCP2022_8 ┆ MYT1     │
#│           ┆ Run1      ┆ -20       ┆           ┆   ┆ painting- ┆           ┆ 04400     ┆          │
#│           ┆           ┆           ┆           ┆   ┆ gallery/c ┆           ┆           ┆          │
#│           ┆           ┆           ┆           ┆   ┆ pg001…    ┆           ┆           ┆          │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05       ┆ … ┆ s3://cell ┆ CRISPR    ┆ JCP2022_8 ┆ MYT1     │
#│           ┆ Run1      ┆ -20       ┆           ┆   ┆ painting- ┆           ┆ 04400     ┆          │
#│           ┆           ┆           ┆           ┆   ┆ gallery/c ┆           ┆           ┆          │
#│           ┆           ┆           ┆           ┆   ┆ pg001…    ┆           ┆           ┆          │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05       ┆ … ┆ s3://cell ┆ CRISPR    ┆ JCP2022_8 ┆ MYT1     │
#│           ┆ Run1      ┆ -20       ┆           ┆   ┆ painting- ┆           ┆ 04400     ┆          │
#│           ┆           ┆           ┆           ┆   ┆ gallery/c ┆           ┆           ┆          │
#│           ┆           ┆           ┆           ┆   ┆ pg001…    ┆           ┆           ┆          │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05       ┆ … ┆ s3://cell ┆ CRISPR    ┆ JCP2022_8 ┆ MYT1     │
#│           ┆ Run1      ┆ -20       ┆           ┆   ┆ painting- ┆           ┆ 04400     ┆          │
#│           ┆           ┆           ┆           ┆   ┆ gallery/c ┆           ┆           ┆          │
#│           ┆           ┆           ┆           ┆   ┆ pg001…    ┆           ┆           ┆          │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05       ┆ … ┆ s3://cell ┆ CRISPR    ┆ JCP2022_8 ┆ MYT1     │
#│           ┆ Run1      ┆ -20       ┆           ┆   ┆ painting- ┆           ┆ 04400     ┆          │
#│           ┆           ┆           ┆           ┆   ┆ gallery/c ┆           ┆           ┆          │
#│           ┆           ┆           ┆           ┆   ┆ pg001…    ┆           ┆           ┆          │
#└───────────┴───────────┴───────────┴───────────┴───┴───────────┴───────────┴───────────┴──────────┘

The columns of these dataframes are:

Metadata_[Source/Batch/Plate/Well/Site]:
 - Source: Source in the range 0-14.
 - Plate: Plate containing a multitude of wells. It is a string.
 - Batch: Collection of plates imaged at around the same time. It is a string.
 - Well: Physical location wherein the experiment was performed and imaged. It is a string with format [SNN] where S={A-P} and NN={00-24}.
 - Site: Foci or frame taken in a the well, these are 0-9 for the ORF and CRISPR datasets and 1-6 for the compounds dataset.
[File/Path]name_[Illum/Orig][Channel] 
    
 - Illum: Illumination correction 
 - Orig: Original File
 Also, markers can be:
   - DNA: Dna channel, generally Hoecsht.
   - ER: Endoplasmatic Reticulum channel.
   - Mito: Mitochondrial channel.
   - RNA: RNA channel.
standard_key: Gene or compound queried

We can then feed this information to jump_portrait.fetch.get_jump_image to fetch the available images.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jump_portrait-0.0.24.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

jump_portrait-0.0.24-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file jump_portrait-0.0.24.tar.gz.

File metadata

  • Download URL: jump_portrait-0.0.24.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.8.12

File hashes

Hashes for jump_portrait-0.0.24.tar.gz
Algorithm Hash digest
SHA256 73e0de8b6390e0d44c5529fe57f3d4d99b786fd82e83e856e5a5fe34dccaeb3e
MD5 4c77a7c6983b59259d132820c12d0204
BLAKE2b-256 32f71e79cee64af155be98a808711d9178a854251662b0560fc8efaebe469318

See more details on using hashes here.

File details

Details for the file jump_portrait-0.0.24-py3-none-any.whl.

File metadata

  • Download URL: jump_portrait-0.0.24-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.8.12

File hashes

Hashes for jump_portrait-0.0.24-py3-none-any.whl
Algorithm Hash digest
SHA256 7b2d34cba503a17a0e03d769f9a95b2884b232f678d55635bccf3d16717cf9be
MD5 cb76573c2b866c83babdc9ecc4f11926
BLAKE2b-256 e0933cc9bec3225456a446d411406a085b7532b1b16ab5462d6821094616fecc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page