Tools to fetch and visualize JUMP images
Project description
Table of Contents
Fetch, visualize and.or download images from the JUMP dataset.
Workflow
Workflow 1: Download all images for a given item and their controls
item_name = "MYT1" # Item or Compound of interest - (GC)OI
# channels = ["bf"] # Standard channels are ER, AGP, Mito DNA and RNA
channels = ["DNA"] # Standard channels are ER, AGP, Mito DNA and RNA
corrections = ["Orig"] # Can also be "Illum"
controls = True # Fetch controls in plates alongside (GC)OI?
download_item_images(item_name, channels, corrections=corrections, controls=controls)
Workflow 2: get images from explicit metadata
Fetch one image for a given item and a control
from jump_portrait.fetch import get_jump_image, get_sample
from jump_portrait.save import download_item_images
sample = get_sample()
source, batch, plate, well, site, *rest = sample.row(0)
channel = "DNA"
correction = None # or "Illum"
img = get_jump_image(source, batch, plate, well, channel, site, correction)
Workflow 3: Fetch bright field channel Note that this is hacky and may not work for all sources.
from jump_portrait.fetch import get_jump_image, get_sample
from jump_portrait.save import download_item_images
sample = get_sample()
channel = "bf"
correction = None
source, batch, plate, well, site, *rest = sample.row(0)
img = get_jump_image(source, batch, plate, well, channel, site, correction)
Developer
First, we Locate the images produced to a given perturbation.
from jump_portrait.fetch import get_item_location_info
gene = "MYT1"
location_df = get_item_location_info(gene)
Returns a polars dataframe whose columns contain the metadata
alongside path and file locations
#┌───────────┬───────────┬───────────┬───────────┬───┬───────────┬───────────┬───────────┬──────────┐
#│ Metadata_ ┆ Metadata_ ┆ Metadata_ ┆ Metadata_ ┆ … ┆ PathName_ ┆ Metadata_ ┆ Metadata_ ┆ standard │
#│ Source ┆ Batch ┆ Plate ┆ Well ┆ ┆ OrigRNA ┆ PlateType ┆ JCP2022 ┆ _key │
#│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
#│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
#╞═══════════╪═══════════╪═══════════╪═══════════╪═══╪═══════════╪═══════════╪═══════════╪══════════╡
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05 ┆ … ┆ s3://cell ┆ CRISPR ┆ JCP2022_8 ┆ MYT1 │
#│ ┆ Run1 ┆ -20 ┆ ┆ ┆ painting- ┆ ┆ 04400 ┆ │
#│ ┆ ┆ ┆ ┆ ┆ gallery/c ┆ ┆ ┆ │
#│ ┆ ┆ ┆ ┆ ┆ pg001… ┆ ┆ ┆ │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05 ┆ … ┆ s3://cell ┆ CRISPR ┆ JCP2022_8 ┆ MYT1 │
#│ ┆ Run1 ┆ -20 ┆ ┆ ┆ painting- ┆ ┆ 04400 ┆ │
#│ ┆ ┆ ┆ ┆ ┆ gallery/c ┆ ┆ ┆ │
#│ ┆ ┆ ┆ ┆ ┆ pg001… ┆ ┆ ┆ │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05 ┆ … ┆ s3://cell ┆ CRISPR ┆ JCP2022_8 ┆ MYT1 │
#│ ┆ Run1 ┆ -20 ┆ ┆ ┆ painting- ┆ ┆ 04400 ┆ │
#│ ┆ ┆ ┆ ┆ ┆ gallery/c ┆ ┆ ┆ │
#│ ┆ ┆ ┆ ┆ ┆ pg001… ┆ ┆ ┆ │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05 ┆ … ┆ s3://cell ┆ CRISPR ┆ JCP2022_8 ┆ MYT1 │
#│ ┆ Run1 ┆ -20 ┆ ┆ ┆ painting- ┆ ┆ 04400 ┆ │
#│ ┆ ┆ ┆ ┆ ┆ gallery/c ┆ ┆ ┆ │
#│ ┆ ┆ ┆ ┆ ┆ pg001… ┆ ┆ ┆ │
#│ source_13 ┆ 20220914_ ┆ CP-CC9-R1 ┆ B05 ┆ … ┆ s3://cell ┆ CRISPR ┆ JCP2022_8 ┆ MYT1 │
#│ ┆ Run1 ┆ -20 ┆ ┆ ┆ painting- ┆ ┆ 04400 ┆ │
#│ ┆ ┆ ┆ ┆ ┆ gallery/c ┆ ┆ ┆ │
#│ ┆ ┆ ┆ ┆ ┆ pg001… ┆ ┆ ┆ │
#└───────────┴───────────┴───────────┴───────────┴───┴───────────┴───────────┴───────────┴──────────┘
The columns of these dataframes are:
Metadata_[Source/Batch/Plate/Well/Site]:
- Source: Source in the range 0-14.
- Plate: Plate containing a multitude of wells. It is a string.
- Batch: Collection of plates imaged at around the same time. It is a string.
- Well: Physical location wherein the experiment was performed and imaged. It is a string with format [SNN] where S={A-P} and NN={00-24}.
- Site: Foci or frame taken in a the well, these are 0-9 for the ORF and CRISPR datasets and 1-6 for the compounds dataset.
[File/Path]name_[Illum/Orig][Channel]
- Illum: Illumination correction
- Orig: Original File
Also, markers can be:
- DNA: Dna channel, generally Hoecsht.
- ER: Endoplasmatic Reticulum channel.
- Mito: Mitochondrial channel.
- RNA: RNA channel.
standard_key: Gene or compound queried
We can then feed this information to jump_portrait.fetch.get_jump_image
to fetch the available images.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jump_portrait-0.0.24.tar.gz
(11.6 kB
view details)
Built Distribution
File details
Details for the file jump_portrait-0.0.24.tar.gz
.
File metadata
- Download URL: jump_portrait-0.0.24.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73e0de8b6390e0d44c5529fe57f3d4d99b786fd82e83e856e5a5fe34dccaeb3e |
|
MD5 | 4c77a7c6983b59259d132820c12d0204 |
|
BLAKE2b-256 | 32f71e79cee64af155be98a808711d9178a854251662b0560fc8efaebe469318 |
File details
Details for the file jump_portrait-0.0.24-py3-none-any.whl
.
File metadata
- Download URL: jump_portrait-0.0.24-py3-none-any.whl
- Upload date:
- Size: 12.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b2d34cba503a17a0e03d769f9a95b2884b232f678d55635bccf3d16717cf9be |
|
MD5 | cb76573c2b866c83babdc9ecc4f11926 |
|
BLAKE2b-256 | e0933cc9bec3225456a446d411406a085b7532b1b16ab5462d6821094616fecc |