Skip to main content

Jupyddl is a PDDL planner built on top of a Julia parser

Project description

tests build codecov CodeFactor Percentage of issues still open GitHub license GitHub contributors

PyJulia PDDL Planner

A Python wrapper using JuliaPy for the PDDL.jl parser package and implementing its own planners.

Features

  • Easy to use API for exploring new states
  • Depth First Search
  • Breadth First Search
  • Dijkstra
  • A*
    • Goal Count Heuristic

Dependencies

  • Install Python (3.7.5 is the tested version)

  • Install Julia

$ wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.2-linux-x86_64.tar.gz
$ tar -xvzf julia-1.5.2-linux-x86_64.tar.gz
$ sudo cp -r julia-1.5.2 /opt/
$ sudo ln -s /opt/julia-1.5.2/bin/julia /usr/local/bin/julia
  • Install Julia dependencies
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
  • Package installation
$ python3 -m pip install --upgrade pip
$ python3 -m pip install jupyddl

Usage

If using the jupyddl pip package:

  • If you want to use the data analysis tool, create a pddl-examples folder with pddl instances subfolders containing "problem.pddl" and "domain.pddl". (refer to APLA-Toolbox/pddl-examples)

If you want to use it by cloning the project:

$ git clone https://github.com/APLA-Toolbox/PythonPDDL
$ cd PythonPDDL
$ python3 -m pip install -r requirements.txt
$ git submodule update --init

You should have a pddl-examples folder containing PDDL instances.

[AutomatedPlanner]

from jupyddl import AutomatedPlanner # takes some time because it has to instantiate the Julia interface
apl = AutomatedPlanner("pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl)

apl.available_heuristics
["basic/zero", "basic/goal_count", "delete_relaxation/h_max", "delete_relaxation/h_add"]

apl.initial_state
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c2), white(r3, c2), white(r2, c3)]), Dict{Symbol,Any}())>

actions = apl.available_actions(apl.initial_state)
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_row(r2)>, <PyCall.jlwrap flip_column(c3)>, <PyCall.jlwrap flip_column(c2)>, <PyCall.jlwrap flip_column(c1)>]

apl.satisfies(apl.problem.goal, apl.initial_state)
False

apl.transition(apl.initial_state, actions[0])
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>

path = apl.breadth_first_search() # computes path ([]State) with BFS

print(apl.get_state_def_from_path(path))
[<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r1, c2), white(r3, c2), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1), white(r2, c2)]), Dict{Symbol,Any}())>]

print(apl.get_actions_from_path(path))
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_column(c2)>]

[Data Analyst]

Make sure you have a pddl-examples folder where you run your environment that contains independent folders with "domain.pddl" and "problem.pddl" files, with those standard names. ( if you didn't generate with git submodule update )

from jupyddl import DataAnalyst

da = DataAnalyst()
da.plot_astar() # plots complexity statistics for all the problem.pddl/domain.pddl couples in the pddl-examples/ folder

da.plot_astar(problem="pddl-examples/dinner/problem.pddl", domain="pddl-examples/dinner/domain.pddl") # scatter complexity statistics for the provided pddl

da.plot_astar(heuristic_key="basic/zero") # use h=0 instead of goal_count for your computation

da.plot_dfs() # same as astar

da.comparative_data_plot() # Run all planners on the pddl-examples folder and plots them on the same figure, data is stored in a data.json file 

da.comparative_data_plot(astar=False) # Exclude astar from the comparative plot

da.comparative_data_plot(heuristic_key="basic/zero") # use zero heuristic for h based planners

da.comparative_data_plot(collect_new_data=False) # uses data.json to plot the data

da.comparative_astar_heuristic_plot() # compare results of astar with all available heuristics

Contribute

Open an issue to state clearly the contribution you want to make. Upon aproval send in a PR with the Issue referenced. (Implement Issue #No / Fix Issue #No).

Maintainers

  • Erwin Lejeune
  • Sampreet Sarkar

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyddl-0.4.0.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

jupyddl-0.4.0-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

File details

Details for the file jupyddl-0.4.0.tar.gz.

File metadata

  • Download URL: jupyddl-0.4.0.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for jupyddl-0.4.0.tar.gz
Algorithm Hash digest
SHA256 aa982e0941dfb7e7f3e78510cf48b5343406a181d265f0fc1acc9bb9a516177c
MD5 db8a91518d5c0222fe24e8f5c64f9205
BLAKE2b-256 4ffe048d65d9907bd770059fab8a558bb789545d82cd86c3315ff94c76803783

See more details on using hashes here.

File details

Details for the file jupyddl-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: jupyddl-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 17.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for jupyddl-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 16d046f14814460f61cec8aa5d5d6a232ca2f31794c6bad2d8bcd3cdbe919ba3
MD5 1d0feac0b726bc3600fa26c740c02c5b
BLAKE2b-256 3ec1c1bcf393ed18a75a0f5f4b860161b4a5d099eaac741a18d7b0391c0c0ae6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page