Jupyddl is a PDDL planner built on top of a Julia parser
Project description
Python PDDL
✨ A Python wrapper using JuliaPy for the PDDL.jl parser package and implementing its own planners. ✨
Loved the project? Please consider donating to help it improve!
Features 🌱
- ✨ Built to be expanded: easy to add new planners
- 🖥️ Supported on MacOS and Ubuntu
- 🎌 Built with Julia and Python
- 🔎 Uninformed Planners (DFS, BFS)
- 🧭 Informed Planners (Dijkstra, A*, Greedy Best First)
- 📊 Several general purpose heuristics (Goal Count, Delete Relaxation [Hmax, Hadd], Relaxed Critical Path [H1, H2, H3])
- 🍻 Maintained (Incoming: Critical Path, Landmarks Heuristics...)
Docker 🐋
You can also use the project in a docker container using docker-pythonpddl
Install 💾
-
Install Python (3.7.5 is the tested version)
-
Install Julia
$ wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.2-linux-x86_64.tar.gz
$ tar -xvzf julia-1.5.2-linux-x86_64.tar.gz
$ sudo cp -r julia-1.5.2 /opt/
$ sudo ln -s /opt/julia-1.5.2/bin/julia /usr/local/bin/julia
- Install Julia dependencies
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
- Package installation (only if used as library, not needed to run the scripts)
$ python3 -m pip install --upgrade pip
$ python3 -m pip install jupyddl
IPC Script ⚔️
- Clone the project :
$ git clone https://github.com/APLA-Toolbox/PythonPDDL
$ cd PythonPDDL
$ python3 -m pip install -r requirements.txt
$ git submodule update --init // Only if you need PDDL files for testing
- Run the script :
$ cd scripts/
$ python ipc.py "path_to_domain.pddl" "path_to_problem.pddl" "path_to_desired_output_file"
The output file will show the path with a list of state, the path with a list of action and the metrics proposed by IPC2018.
Basic Usage 📑
If using the jupyddl pip package:
- If you want to use the data analysis tool, create a pddl-examples folder with pddl instances subfolders containing "problem.pddl" and "domain.pddl". (refer to APLA-Toolbox/pddl-examples)
If you want to use it by cloning the project:
$ git clone https://github.com/APLA-Toolbox/PythonPDDL
$ cd PythonPDDL
$ python3 -m pip install -r requirements.txt
$ git submodule update --init
You should have a pddl-examples
folder containing PDDL instances.
AutomatedPlanner Class 🗺️
from jupyddl import AutomatedPlanner # takes some time because it has to instantiate the Julia interface
apl = AutomatedPlanner("pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl)
apl.available_heuristics
["basic/zero", "basic/goal_count", "delete_relaxation/h_max", "delete_relaxation/h_add"]
apl.initial_state
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c2), white(r3, c2), white(r2, c3)]), Dict{Symbol,Any}())>
actions = apl.available_actions(apl.initial_state)
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_row(r2)>, <PyCall.jlwrap flip_column(c3)>, <PyCall.jlwrap flip_column(c2)>, <PyCall.jlwrap flip_column(c1)>]
apl.satisfies(apl.problem.goal, apl.initial_state)
False
apl.transition(apl.initial_state, actions[0])
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>
path = apl.breadth_first_search() # computes path ([]State) with BFS
print(apl.get_state_def_from_path(path))
[<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r1, c2), white(r3, c2), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1), white(r2, c2)]), Dict{Symbol,Any}())>]
print(apl.get_actions_from_path(path))
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_column(c2)>]
DataAnalyst (more like Viz) Class 📈
Make sure you have a pddl-examples folder where you run your environment that contains independent folders with "domain.pddl" and "problem.pddl" files, with those standard names. ( if you didn't generate with git submodule update )
from jupyddl import DataAnalyst
da = DataAnalyst()
da.plot_astar() # plots complexity statistics for all the problem.pddl/domain.pddl couples in the pddl-examples/ folder
da.plot_astar(problem="pddl-examples/dinner/problem.pddl", domain="pddl-examples/dinner/domain.pddl") # scatter complexity statistics for the provided pddl
da.plot_astar(heuristic_key="basic/zero") # use h=0 instead of goal_count for your computation
da.plot_dfs() # same as astar
da.comparative_data_plot() # Run all planners on the pddl-examples folder and plots them on the same figure, data is stored in a data.json file
da.comparative_data_plot(astar=False) # Exclude astar from the comparative plot
da.comparative_data_plot(heuristic_key="basic/zero") # use zero heuristic for h based planners
da.comparative_data_plot(collect_new_data=False) # uses data.json to plot the data
da.comparative_astar_heuristic_plot() # compare results of astar with all available heuristics
Contribute 🆘
Please see docs/CONTRIBUTING.md
for more details on contributing!
Maintainers Ⓜ️
- Erwin Lejeune
- Sampreet Sarkar
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jupyddl-0.4.1.tar.gz
.
File metadata
- Download URL: jupyddl-0.4.1.tar.gz
- Upload date:
- Size: 17.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fea6f2820cd18550dfb5bd69d95c0c9393b0e29f554480ff2b7cc85bfd6146eb |
|
MD5 | 9e98972c790d6c939f9d562d359ef741 |
|
BLAKE2b-256 | dd8ae771108adc32dfdf63cd183d7ef62e41b026cf37c2bf88d18dcd39b08a4a |
File details
Details for the file jupyddl-0.4.1-py3-none-any.whl
.
File metadata
- Download URL: jupyddl-0.4.1-py3-none-any.whl
- Upload date:
- Size: 23.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc2b38d4cc533fc2b2b19134c8ec7891951bfb3e6240ad5b722692cbb1dbc383 |
|
MD5 | fdcf074e0ebc928fe3cbdbb0790218ce |
|
BLAKE2b-256 | 05e8a7589bf0ae4b7d37cdfd05e6f91f1c4b4c69a62471a7f8988c0e05591c12 |