Skip to main content

Easy git tracking of Jupyter lab files

Project description

jupyter-cleaner

jupyter-cleaner makes tracking Jupyter lab files in git easy.

This is done by:

  • Removing the output of cells
  • Formatting the source of cells (using black)
  • Reordering imports in the source of cells (using reorder-python-imports)
  • Setting the execution count of cells
  • pretty printing the JSON array

It is recommended to run jupyter-cleaner before adding the Jupyter lab files to the stage in git. This allows for easier tracking of differences between commits.

CLI

running jupyter-cleaner -h displays:

usage: jupyter-cleaner [-h] [--exclude_files_or_dirs EXCLUDE_FILES_OR_DIRS [EXCLUDE_FILES_OR_DIRS ...]] [--execution_count EXECUTION_COUNT]
                       [--indent_level INDENT_LEVEL] [--remove_outputs] [--format] [--reorder_imports] [--ignore_pyproject]
                       files_or_dirs [files_or_dirs ...]

jupyter_cleaner

positional arguments:
  files_or_dirs         Jupyter lab files to format or directories to search for lab files

options:
  -h, --help            show this help message and exit
  --exclude_files_or_dirs EXCLUDE_FILES_OR_DIRS [EXCLUDE_FILES_OR_DIRS ...]
                        Jupyter lab files or directories to exclude from formatting and search
  --execution_count EXECUTION_COUNT
                        Number to set for the execution count of every cell. Defaults to 0.
  --indent_level INDENT_LEVEL
                        Integer greater than zero will pretty-print the JSON array with that indent level. An indent level of 0 or negative
                        will only insert newlines.. Defaults to 4.
  --remove_outputs      Remove output of cell. Defaults to false.
  --format              Format code of every cell (uses black). Defaults to false.
  --reorder_imports     Reorder imports of every cell (uses reorder-python-imports). Defaults to false.
  --ignore_pyproject    Argparse will over-ride pyproject. Defaults to false.

pyproject.toml

Inputs to jupyter-cleaner can be supplied via pyproject.toml:

[tool.jupyter_cleaner]
execution_count=0
remove_outputs=true
format=true
reorder_imports=true
indent_level=4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyter_cleaner-0.3.0.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

jupyter_cleaner-0.3.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file jupyter_cleaner-0.3.0.tar.gz.

File metadata

  • Download URL: jupyter_cleaner-0.3.0.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Windows/10

File hashes

Hashes for jupyter_cleaner-0.3.0.tar.gz
Algorithm Hash digest
SHA256 c9ecc294b1767e4574c5b76e227e4b12695e6346c103c4a6a1c2a8c20b55a1eb
MD5 ca3d9a844ac01ae349ec278b730db9f7
BLAKE2b-256 7d4b1771f31ae0bdba9580e36737c2efd8bd0e562bc0d2492c6df885f46675eb

See more details on using hashes here.

File details

Details for the file jupyter_cleaner-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for jupyter_cleaner-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 55bbbf443dc647953fd0fedd43f8cb099f29754bdae5f711ce155a475c77d522
MD5 0544bb6445ee96f1b4125c68d5ac775b
BLAKE2b-256 ef7aab6e8f83c5c0e392e14f89931c847cd574e55f2f4b32b5b56bd05343cfa1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page