Skip to main content

Jupyter Notebook extension to levarage pandas DataFrames by integrating DataTables JS.

Project description

Jupyter DataTables

Jupyter Notebook extension to levarage pandas DataFrames by integrating DataTables JS.


Data scientists and in fact many developers work with pd.DataFrame on daily basis to interpret data to process them. In my typical workflow. The common workflow is to display the dataframe, take a look at the data schema and then produce multiple plots to check the distribution of the data to have a clearer picture, perhaps search some data in the table, etc...

What if those distribution plots were part of the standard DataFrame and we had the ability to quickly search through the table with minimal effort? What if it was the default representation?

The jupyter-datatables uses jupyter-require to draw the table.


pip install jupyter-datatables


import numpy as np
import pandas as pd

from jupyter_datatables import init_datatables_mode


That's it, your default pandas representation will now use Jupyter DataTables!

df = pd.DataFrame(np.abs(np.random.randn(50, 5)), columns=list(string.ascii_uppercase[:5]))

Jupyter Datatables table representation

In most cases, you don't need to worry too much about the size of your data. Jupyter DataTables calculates required sample size based on a confidence interval (by default this would be 0.95) and margin of error and ceils it to the highest 'smart' value.

For example, for a data containing 100,000 samples, given 0.975 confidence interval and 0.02 margin of error, the Jupyter DataTables would calculate that 3044 samples are required and it would round it up to 4000.

Jupyter Datatables long table sample size

With additional note:

Sample size: 4,000 out of 100,000

We can also handle wide tables with ease.

df = pd.DataFrame(np.abs(np.random.randn(50, 20)), columns=list(string.ascii_uppercase[:20]))

Jupyter Datatables wide table representation

As per 0.3.0, there is a support for interactive tooltips:

Jupyter Datatables wide table representation

And also support for custom indices including Date type:

dft = pd.DataFrame({'A': np.random.rand(5),
                    'B': [1, 1, 3, 2, 1],
                    'C': 'This is a very long sentence that should automatically be trimmed',
                    'D': [pd.Timestamp('20010101'), pd.Timestamp('20010102'), pd.Timestamp('20010103'), pd.Timestamp('20010104'), pd.Timestamp('20010105')],
                    'E': pd.Series([1.0] * 5).astype('float32'),
                    'F': [False, True, False, False, True],

dft.D = dft.D.apply(pd.to_datetime)
dft.set_index('D', inplace=True)

Jupyter Datatables wide table representation

Current status and future plans:

Check out the Project Board where we track issues and TODOs for our Jupyter tooling!

Author: Marek Cermak, @AICoE

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for jupyter-datatables, version 0.3.9
Filename, size File type Python version Upload date Hashes
Filename, size jupyter_datatables-0.3.9-py2.py3-none-any.whl (21.7 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size jupyter-datatables-0.3.9.tar.gz (6.3 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page