Skip to main content

A set of Python utility methods to ease usage of Jupyter notebook

Project description

======================
Jupyter Notebook Utils
======================

.. image:: https://travis-ci.org/Stibbons/jupyter_utils.svg?branch=master
:target: https://travis-ci.org/Stibbons/jupyter_utils
.. image:: https://badge.fury.io/py/jupyter_utils.svg
:target: https://pypi.python.org/pypi/jupyter_utils/
:alt: Pypi package

A set of Python utility methods to ease usage of Jupyter notebook

* Free software: MIT
* Source: https://github.com/Stibbons/jupyter_utils

Installation
============

Install `jupyter_utils` in Anaconda:

.. code-block:: bash

$ source activate my_conda_env
$ pip install jupyter_utils

Note: only dependencies described in `requirements.txt` will be installed when using `pip install`.
The development dependencies (pylint,...) and **not** installed on deployment.

Usage
=====

>From now, on every Jupyter notebook that use this conda environment, you can install any missing
anaconda package directly from the cell.

Install Anaconda package
------------------------

An anaconda package can be installed directly from the notebook using `! conda install ...`, but
you need to specify the name of the kernel. To simply this, Jupyter Utils provides:

.. code-block:: python

from jupyter_utils import conda
conda.install("numpy")

Grid Search CV on Apache Spark
------------------------------

.. code-block:: python

from jupyter_utils.spark import SparkGridSearchCV
SparkGridSearchCV(sc, model, params)

Contributing
============

Create a virtualenv:

.. code-block:: bash

$ virtualenv venv
$ source venv/bin/activate
$ pip install --upgrade pip # Force upgrade to latest version of pip

Setup for production:

.. code-block:: bash

$ pip install -r requirements.txt .

Setup for development and unit tests:

.. code-block:: bash

$ pip install -r requirements.txt -r requirements-dev.txt -e .
$ python setup.py develop

Execute unit tests:

.. code-block:: bash
$ python setup.py test

Code Style:

.. code-block:: bash
$ python setup.py flake8
$ yapf -r -i jupyter_utils

Build:

.. code-block:: bash

$ # Source package
$ python setup.py sdist
$ # Binary package:
$ python setup.py bdist bdist_wheel

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyter_utils-1.2.2.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

jupyter_utils-1.2.2-py2.py3-none-any.whl (9.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jupyter_utils-1.2.2.tar.gz.

File metadata

File hashes

Hashes for jupyter_utils-1.2.2.tar.gz
Algorithm Hash digest
SHA256 99472def9b3735d8de29123acbcfbb6c00f5a19f0fc38414000634efb662b366
MD5 b6d911adbb85c31c4881bd55b6127f87
BLAKE2b-256 28a0f7ed9e9eceeaf0a2a6d0cefc6642b41585f9471859602dfebdb8d39c27c9

See more details on using hashes here.

File details

Details for the file jupyter_utils-1.2.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jupyter_utils-1.2.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 db1b96f2c3cd4b502e1e0d04d1f555d26213b8b754138fcf6d8638be5c077d5d
MD5 bac3b10b0747aaca4e30494519af38fd
BLAKE2b-256 3cdb687b4012e230b8165c0f6be99f4872512f772f1be7f7eb411f05639d04c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page