Skip to main content

fairness and evaluation library

Project description

ci PyPI version fury.io PyPI license PRs Welcome Downloads

Jurity: Fairness & Evaluation Library

Jurity is a research library that provides fairness metrics, recommender system evaluations, classification metrics and bias mitigation techniques. The library adheres to PEP-8 standards and is tested heavily.

Jurity is developed by the Artificial Intelligence Center of Excellence at Fidelity Investments. Documentation is available at fidelity.github.io/jurity.

Fairness Metrics

Binary Bias Mitigation Techniques

Recommenders Metrics

Classification Metrics

Quick Start: Fairness Evaluation

# Import binary and multi-class fairness metrics
from jurity.fairness import BinaryFairnessMetrics, MultiClassFairnessMetrics

# Data
binary_predictions = [1, 1, 0, 1, 0, 0]
multi_class_predictions = ["a", "b", "c", "b", "a", "a"]
multi_class_multi_label_predictions = [["a", "b"], ["b", "c"], ["b"], ["a", "b"], ["c", "a"], ["c"]]
is_member = [0, 0, 0, 1, 1, 1]
classes = ["a", "b", "c"]

# Metrics (see also other available metrics)
metric = BinaryFairnessMetrics.StatisticalParity()
multi_metric = MultiClassFairnessMetrics.StatisticalParity(classes)

# Scores
print("Metric:", metric.description)
print("Lower Bound: ", metric.lower_bound)
print("Upper Bound: ", metric.upper_bound)
print("Ideal Value: ", metric.ideal_value)
print("Binary Fairness score: ", metric.get_score(binary_predictions, is_member))
print("Multi-class Fairness scores: ", multi_metric.get_scores(multi_class_predictions, is_member))
print("Multi-class multi-label Fairness scores: ", multi_metric.get_scores(multi_class_multi_label_predictions, is_member))

Quick Start: Bias Mitigation

# Import binary fairness and binary bias mitigation
from jurity.mitigation import BinaryMitigation
from jurity.fairness import BinaryFairnessMetrics

# Data
labels = [1, 1, 0, 1, 0, 0, 1, 0]
predictions = [0, 0, 0, 1, 1, 1, 1, 0]
likelihoods = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.1]
is_member = [0, 0, 0, 0, 1, 1, 1, 1]

# Bias Mitigation
mitigation = BinaryMitigation.EqualizedOdds()

# Training: Learn mixing rates from the labeled data
mitigation.fit(labels, predictions, likelihoods, is_member)

# Testing: Mitigate bias in predictions
fair_predictions, fair_likelihoods = mitigation.transform(predictions, likelihoods, is_member)

# Scores: Fairness before and after
print("Fairness Metrics Before:", BinaryFairnessMetrics().get_all_scores(labels, predictions, is_member), '\n'+30*'-')
print("Fairness Metrics After:", BinaryFairnessMetrics().get_all_scores(labels, fair_predictions, is_member))

Quick Start: Recommenders Evaluation

# Import recommenders metrics
from jurity.recommenders import BinaryRecoMetrics, RankingRecoMetrics, DiversityRecoMetrics
import pandas as pd

# Data
actual = pd.DataFrame({"user_id": [1, 2, 3, 4], "item_id": [1, 2, 0, 3], "clicks": [0, 1, 0, 0]})
predicted = pd.DataFrame({"user_id": [1, 2, 3, 4], "item_id": [1, 2, 2, 3], "clicks": [0.8, 0.7, 0.8, 0.7]})
item_features = pd.DataFrame({"item_id": [0, 1, 2, 3], "feature1": [1, 2, 2, 1], "feature2": [0.8, 0.7, 0.8, 0.7]})

# Metrics
auc = BinaryRecoMetrics.AUC(click_column="clicks")
ctr = BinaryRecoMetrics.CTR(click_column="clicks")
dr = BinaryRecoMetrics.CTR(click_column="clicks", estimation='dr')
ips = BinaryRecoMetrics.CTR(click_column="clicks", estimation='ips')
map_k = RankingRecoMetrics.MAP(click_column="clicks", k=2)
ncdg_k = RankingRecoMetrics.NDCG(click_column="clicks", k=3)
precision_k = RankingRecoMetrics.Precision(click_column="clicks", k=2)
recall_k = RankingRecoMetrics.Recall(click_column="clicks", k=2)
interlist_diversity_k = DiversityRecoMetrics.InterListDiversity(click_column="clicks", k=2)
intralist_diversity_k = DiversityRecoMetrics.IntraListDiversity(item_features, click_column="clicks", k=2)

# Scores
print("AUC:", auc.get_score(actual, predicted))
print("CTR:", ctr.get_score(actual, predicted))
print("Doubly Robust:", dr.get_score(actual, predicted))
print("IPS:", ips.get_score(actual, predicted))
print("MAP@K:", map_k.get_score(actual, predicted))
print("NCDG:", ncdg_k.get_score(actual, predicted))
print("Precision@K:", precision_k.get_score(actual, predicted))
print("Recall@K:", recall_k.get_score(actual, predicted))
print("Inter-List Diversity@K:", interlist_diversity_k.get_score(actual, predicted))
print("Intra-List Diversity@K:", intralist_diversity_k.get_score(actual, predicted))

Quick Start: Classification Evaluation

# Import classification metrics
from jurity.classification import BinaryClassificationMetrics

# Data
labels = [1, 1, 0, 1, 0, 0, 1, 0]
predictions = [0, 0, 0, 1, 1, 1, 1, 0]

# Available: Accuracy, F1, Precision, Recall, and AUC
f1_score = BinaryClassificationMetrics.F1()

print('F1 score is', f1_score.get_score(predictions, labels))

Installation

Jurity requires Python 3.7+ and can be installed from PyPI using pip install jurity or by building from source as shown in installation instructions.

Support

Please submit bug reports and feature requests as Issues.

License

Jurity is licensed under the Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jurity-1.3.4.tar.gz (11.2 MB view hashes)

Uploaded Source

Built Distribution

jurity-1.3.4-py3-none-any.whl (66.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page