Easy-to-use D4RL offline dataset loader
Project description
just-d4rl
Easy-to-use D4RL offline dataset loader, focused solely on downloading and providing D4RL datasets without dependencies on gym or gymnasium.
Key Features
- Downloads and provides D4RL offline datasets
- No dependencies on gym or gymnasium
- Lightweight and focused functionality
- Easy integration with PyTorch
Installation
Install from PyPI:
pip install just-d4rl
Usage
from just_d4rl import D4RLDataset, d4rl_offline_dataset, D4RLScoreNormalizer
# Download and load a D4RL dataset
d4rl_dataset = d4rl_offline_dataset("hopper-medium-v2")
# Example datasets
d4rl_dataset = d4rl_offline_dataset("walker2d-random-v2")
d4rl_dataset = d4rl_offline_dataset("halfcheetah-medium-expert-v2")
d4rl_dataset = d4rl_offline_dataset("antmaze-umaze-v2")
dataset = d4rl_dataset
dataset['observations'].shape, dataset['actions'].shape, dataset['rewards'].shape, dataset['next_observations'].shape, dataset['terminals'].shape
# ((1000000, 11), (1000000, 3), (1000000,), (1000000, 11), (1000000,))
# Create a PyTorch Dataset
d4rl_dataset = d4rl_offline_dataset("hopper-medium-v2")
dataset = D4RLDataset(d4rl_dataset)
# Get a batch of data
batch = dataset[-16:]
batch["observation"].shape, batch["action"].shape, batch["reward"].shape, batch["next_observation"].shape, batch["terminal"].shape
# (torch.Size([16, 11]), torch.Size([16, 3]), torch.Size([16]), torch.Size([16, 11]), torch.Size([16]))
returns = np.random.rand(16, 1)
get_normalized_score = D4RLScoreNormalizer("hopper-medium-v2")
get_normalized_score(returns)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
just_d4rl-0.2407.5.tar.gz
(10.4 kB
view details)
Built Distribution
File details
Details for the file just_d4rl-0.2407.5.tar.gz
.
File metadata
- Download URL: just_d4rl-0.2407.5.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2836fa9239abbce0d636f452853fa823623b3708e03cec845b9e7d0e222ce915 |
|
MD5 | 46400ffacfbb43aafc5c679c53a77d0d |
|
BLAKE2b-256 | 72e8ae4981d2856ad051dd684acf1583efc71ec5041c4e1cd901bcd7a7a59945 |
File details
Details for the file just_d4rl-0.2407.5-py3-none-any.whl
.
File metadata
- Download URL: just_d4rl-0.2407.5-py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf861ae9475c677cd251264beb27149a08f82171a8164a463b07c1c2a2b382ab |
|
MD5 | 6c479e2ebbae438879c001faa2989654 |
|
BLAKE2b-256 | da17fcfe66984ee20e7de9c61507a30f69762c2a71eca70801450add0c7612ec |