A friendly and lightweight wrapper for arq.
Project description
just-jobs
A friendly and lightweight wrapper for arq. just-jobs provides a simple interface on top of arq that implements additional functionality like synchronous job types (IO-bound vs. CPU-bound) and signed and secure task serialization.
Documentation: https://justjobs.thearchitector.dev.
Tested support on Python 3.7, 3.8, 3.9, and 3.10, 3.11.
$ pdm add just-jobs
# or
$ pip install --user just-jobs
Features
just-jobs doesn't aim to replace the invocations that arq provides, only wrap some of them to make job creation and execution easier and better. It lets you:
- Define and run non-async jobs. Passing a non-async
@job
function to arq will run properly. Non-async jobs can also be defined as either IO-bound or CPU-bound, which changes how the job will be executed to prevent blocking the asyncio event loop. - The arq
Context
parameter now works a lot like FastAPI'sRequest
. It's no longer a required parameter, but if it exists, it will get set. It doesn't have to be namedctx
either, only have the typeContext
. - Specify a single
RedisSettings
within yourWorkerSettings
from which you can create a pool usingSettings.create_pool()
. - Run jobs either immediately with the
.now()
function or via normal arq enqueueing. - Use non-pickable job arguments and kwargs (supported by the dill library).
Usage
Using just-jobs is pretty straight forward:
Add @job()
to any function to make it a delayable job.
If the job is synchronous, specify its job type so just-jobs knows how to optimally run it. If you don't, you'll get an error. This helps encourage thoughtful and intentional job design while ensuring that the event loop is never blocked.
@job(job_type=JobType.CPU_BOUND)
def complex_math(i: int, j: int, k: int)
If it's a coroutine function, you don't need to specify a job type (and will get a warning if you do).
@job()
async def poll_reddit(subr: str)
Use .now
if you want to run the job immediately.
Using .now
allows you to run the job as if it were a normal function. If you have logic that you only want to execute when enqueued, include a parameter with type Context
and check if it exists at runtime (functions with a Context
that are run immediately will have that argument set to None
).
@job()
async def context_aware(ctx: Context, msg: str):
if ctx:
# enqueued then run by arq
return f"hello {msg}"
else:
# invoked manually
return f"bye {msg}"
await context_aware.now("world") == "bye world"
j = await p.enqueue_job("context_aware", "world")
await j.result() == "hello world"
Define WorkerSettings using the BaseSettings
metaclass.
The execution logic that @job
provides requires some stuff. When you defining your WorkerSettings, you must declare BaseSettings
as its metaclass to ensure that stuff exists.
class Settings(metaclass=BaseSettings):
redis_settings = ...
Use Settings.create_pool()
.
While you may elect to use arq.connections.create_pool
as you would normally, using the create_pool
function provided by your Settings
class ensures the pool it creates always matches your worker's Redis and serialization settings (it will be less of a headache). It also lets you take advantage of additional functionality, namely that it can be used as an auto-closing context manager.
# manually
pool = await Settings.create_pool()
await pool.close(close_connection_pool=True)
# or as an async context manager
async with Settings.create_pool() as pool:
...
Enqueue your job.
just-jobs doesn't change the way in which you enqueue your jobs. Just use await pool.enqueue_job(...)
.
await pool.enqueue_job('complex_math', 2, 1, 3)
Caveats
-
arq.func()
and@job()
are mutually exclusive. If you want to configure a job in the same way, pass the settings you would have passed tofunc()
to@job()
instead.@job(job_type=JobType.CPU_BOUND, keep_result_forever=True, max_tries=10) def task(a: int, b: int): return a + b
-
There isn't support for asynchronous CPU-bound tasks. Currently, job types only configure the execution behavior of synchronous tasks (not coroutines). However, there are some valid cases for CPU-bound tasks that also need to be run in an asyncio context.
At the moment, the best way to achieve this will be to create a synchronous CPU-bound task (so it runs in a separate process) that then invokes a coroutine via
asyncio.run
. If you intend on running the task in the current context from time to time (with.now
), just return the coroutine instead and it will get automatically executed in the current event loop.async _async_task(a: int, b: int, c: int): ab = await add(a, b) return await add(ab, c) @job(job_type=JobType.CPU_BOUND) def wrapper_cpu_bound(ctx: Context, a: int, b: int, c: int): task = _async_task(a, b, c) return asyncio.run(task) if ctx else task
Example
The complete example is available at docs/example.py and should work out of the box. The snippet below is just an excerpt to show the features described above:
from just_jobs import BaseSettings, Context, JobType, job
@job()
async def async_task(url: str):
return url
@job(job_type=JobType.IO_BOUND)
def sync_task(ctx: Context, url: str):
# if the context is present, this is being run from the arq listener
if ctx:
print(url)
return url
class Settings(metaclass=BaseSettings):
functions = [async_task, sync_task]
redis_settings = RedisSettings(host="redis")
async def main():
# create a Redis pool using the Settings already defined
pool = await Settings.create_pool()
# run the_task right now and return the url
# even though this is a sync function, `.now` returns an awaitable
url = await sync_task.now("https://www.theglassfiles.com")
await pool.enqueue_job("async_task", "https://www.eliasfgabriel.com")
await pool.enqueue_job("sync_task", "https://gianturl.net")
await pool.close(close_connection_pool=True)
License
This software is licensed under the 3-Clause BSD License.
This package is Treeware. If you use it in production, consider buying the world a tree to thank me for my work. By contributing to my forest, you’ll be creating employment for local families and restoring wildlife habitats.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file just_jobs-2.0.0.tar.gz
.
File metadata
- Download URL: just_jobs-2.0.0.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.5.3 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b789b384df18e1dd19966b422c58099b32acea7ef28446b7ce7266d4b3ba2371 |
|
MD5 | 7b3fef32796d22633f9ca53691e68280 |
|
BLAKE2b-256 | 998250a164922a1b53a329753a2bb52b0ff52005b58c5a8ad1120374582d96e1 |
File details
Details for the file just_jobs-2.0.0-py3-none-any.whl
.
File metadata
- Download URL: just_jobs-2.0.0-py3-none-any.whl
- Upload date:
- Size: 6.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.5.3 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62b6d2ecca3bfe2ef2f7a1afeb60514573e1f41dc6445deaad2f5dd63242e5d4 |
|
MD5 | fbc32b39dc329c58678a276379957923 |
|
BLAKE2b-256 | f2629c059ca0743b378d483955d3cbb7f391af07c489be26a49746521db8f864 |
File details
Details for the file just_jobs-2.0.0-1-py3-none-any.whl
.
File metadata
- Download URL: just_jobs-2.0.0-1-py3-none-any.whl
- Upload date:
- Size: 11.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.8.0a2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7512afb92737de024010fb8ebfff82b7b65c0761c871c9ca456275a42a85e219 |
|
MD5 | 56008cf7566bb27d3e83eecdb1c3d8fb |
|
BLAKE2b-256 | 8de24dd2947101972be36f02a623fda90aac3e6c59a3779c0901f5de8fdef2ef |