Skip to main content

Collection of Python utilities intended to be useful for machine learning research and experiments.

Project description

jutility

Collection of Python utilities intended to be useful for machine learning research and experiments.

Contents

Install with pip

The jutility package is available as a Python package on PyPI, and can be installed with pip using the following commands:

python -m pip install -U pip
python -m pip install -U jutility

Usage examples

plotting

Making a simple plot

import numpy as np
from jutility import plotting

x = np.linspace(-10, 10, 100, dtype=np.float32)
plotting.plot(
    plotting.Line(x, np.log(1 + np.exp(x)), label="Softplus", c="b"),
    plotting.Line(x, np.maximum(x, 0),      label="ReLU",     c="r", ls="--"),
    legend=True,
    plot_name="Softplus vs ReLU",
    dir_name="images",
)

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
x = np.linspace(0, 2)
f = lambda x: x + 0.1 * rng.normal(size=x.shape)

plotting.plot(
    plotting.Line(x, f(x), c="b", marker="o", label="Blue data"),
    plotting.Line(x, np.exp(-f(x)), c="r", marker="o", label="Red data"),
    axis_properties=plotting.AxisProperties("x label", "y label"),
    legend=True,
    plot_name="Simple plot",
    dir_name="images",
)

Multiple lines in a single Line

import numpy as np
from jutility import plotting, util

n = 100
batch_size = 20
rng = np.random.default_rng(0)
noise = rng.normal(size=[n, batch_size])

x = np.linspace(-1, 4, n).reshape(n, 1)
y = np.exp(-x) + 0.1 * noise

plotting.plot(
    plotting.Line(x, y, alpha=0.2,       c="b", zorder=10),
    plotting.Line(x, np.mean(y, axis=1), c="r", zorder=20),
    plot_name="Multiple lines in a single Line",
    dir_name="images",
)

Vector fields (with optional normalisation)

import numpy as np
from jutility import plotting, util

n = 25
x = np.linspace(-2, 2, n).reshape(1, n)
y = np.linspace(-2, 2, n).reshape(n, 1)
dx = y - x
dy = x + y
mp = plotting.MultiPlot(
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=False),
        axis_properties=plotting.AxisProperties(title="normalise=False")
    ),
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=True),
        axis_properties=plotting.AxisProperties(title="normalise=True")
    ),
    figure_properties=plotting.FigureProperties(figsize=[10, 4])
)
mp.save(plot_name="Vector field", dir_name="images")

Shared colour bar

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
z1 = rng.random((100, 200)) + 5
z2 = rng.random((100, 200)) + 2
v_min = min(z1.min(), z2.min())
v_max = max(z1.max(), z2.max())

colour_bar = plotting.ColourBar(v_min, v_max)

mp = plotting.MultiPlot(
    plotting.ImShow(c=z1, vmin=v_min, vmax=v_max),
    colour_bar,
    plotting.ImShow(c=z2, vmin=v_min, vmax=v_max),
    colour_bar,
    figure_properties=plotting.FigureProperties(
        num_rows=2,
        num_cols=2,
        width_ratios=[1, 0.2],
        tight_layout=False,
        title="Shared colour bar",
    ),
)
mp.save("Shared colour bar", dir_name="images")

More complex examples coming soon

util

Coming soon

sweep

Coming soon

(in the meantime, see scripts/make_logo.py which made the logo above, and unit tests for util, plotting, and sweep)

Unit tests

To run all unit tests, install pytest (these tests have previously been run with pytest version 5.4.1), and run the following command (at the time of writing, this takes about 17 seconds to run 42 unit tests, because several unit tests involve saving images or GIFs to disk):

pytest

Build package locally

jutility can be built and installed locally using the following commands, replacing $WHEEL_NAME with the name of the wheel built by the python -m build command (for example, jutility-0.0.5-py3-none-any.whl):

python -m build
python -m pip install --force-reinstall --no-deps dist/$WHEEL_NAME

Updating package on PyPI

This package was uploaded to PyPI following the Packaging Python Projects tutorial in the official Python documentation.

To update PyPI with a newer version, update the version tag in setup.cfg, and then use the following commands:

rm -rf dist/*
python -m build
python -m twine upload dist/*

When prompted by twine, enter __token__ as the username, and paste an API token from the PyPI account management webpage as the password (including the pypi- prefix).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jutility-0.0.14.tar.gz (30.0 kB view details)

Uploaded Source

Built Distribution

jutility-0.0.14-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file jutility-0.0.14.tar.gz.

File metadata

  • Download URL: jutility-0.0.14.tar.gz
  • Upload date:
  • Size: 30.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for jutility-0.0.14.tar.gz
Algorithm Hash digest
SHA256 b78d46babd8d191b68dc8e42cadad58625f45dace2c092a8e746f02bd0894925
MD5 2ebe73146043c4e05e3f7483efd4b257
BLAKE2b-256 5dff6c1a0a800286d44cd97908211ae27583cb23847ebe6166dff55bfc429a81

See more details on using hashes here.

File details

Details for the file jutility-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: jutility-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for jutility-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 20e37385d3d1d90eb95890010ede6fdddf008c1253c8343309ca011dfe30d617
MD5 121e5302e501a2b7927b5a64a5efdd65
BLAKE2b-256 b8154653d8ee56ba3af6c2166e87c983a5c80bf64c50890c157c5daf2d49957c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page