Skip to main content

Collection of Python utilities intended to be useful for machine learning research and experiments.

Project description

jutility

Collection of Python utilities intended to be useful for machine learning research and experiments.

Contents

Install with pip

The jutility package is available as a Python package on PyPI, and can be installed with pip using the following commands:

python -m pip install -U pip
python -m pip install -U jutility

Alternatively, jutility can be installed in "editable mode" from the GitHub repository:

git clone https://github.com/jakelevi1996/jutility.git
cd jutility
python -m pip install -e .

Usage examples

plotting

Making a simple plot

import numpy as np
from jutility import plotting

x = np.linspace(-10, 10, 100, dtype=np.float32)
plotting.plot(
    plotting.Line(x, np.log(1 + np.exp(x)), label="Softplus", c="b"),
    plotting.Line(x, np.maximum(x, 0),      label="ReLU",     c="r", ls="--"),
    legend=True,
    plot_name="Softplus vs ReLU",
    dir_name="images",
)

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
x = np.linspace(0, 2)
f = lambda x: x + 0.1 * rng.normal(size=x.shape)

plotting.plot(
    plotting.Line(x, f(x), c="b", marker="o", label="Blue data"),
    plotting.Line(x, np.exp(-f(x)), c="r", marker="o", label="Red data"),
    axis_properties=plotting.AxisProperties("x label", "y label"),
    legend=True,
    plot_name="Simple plot",
    dir_name="images",
)

Multiple lines in a single Line

import numpy as np
from jutility import plotting, util

n = 100
batch_size = 20
rng = np.random.default_rng(0)
noise = rng.normal(size=[n, batch_size])

x = np.linspace(-1, 4, n).reshape(n, 1)
y = np.exp(-x) + 0.1 * noise

plotting.plot(
    plotting.Line(x, y, alpha=0.2,       c="b", zorder=10),
    plotting.Line(x, np.mean(y, axis=1), c="r", zorder=20),
    plot_name="Multiple lines in a single Line",
    dir_name="images",
)

Vector fields (with optional normalisation)

import numpy as np
from jutility import plotting, util

n = 25
x = np.linspace(-2, 2, n).reshape(1, n)
y = np.linspace(-2, 2, n).reshape(n, 1)
dx = y - x
dy = x + y
mp = plotting.MultiPlot(
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=False),
        axis_properties=plotting.AxisProperties(title="normalise=False")
    ),
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=True),
        axis_properties=plotting.AxisProperties(title="normalise=True")
    ),
    figure_properties=plotting.FigureProperties(figsize=[10, 4])
)
mp.save(plot_name="Vector field", dir_name="images")

Shared colour bar

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
z1 = rng.random((100, 200)) + 5
z2 = rng.random((100, 200)) + 2
v_min = min(z1.min(), z2.min())
v_max = max(z1.max(), z2.max())

colour_bar = plotting.ColourBar(v_min, v_max)

mp = plotting.MultiPlot(
    plotting.ImShow(c=z1, vmin=v_min, vmax=v_max),
    colour_bar,
    plotting.ImShow(c=z2, vmin=v_min, vmax=v_max),
    colour_bar,
    figure_properties=plotting.FigureProperties(
        num_rows=2,
        num_cols=2,
        width_ratios=[1, 0.2],
        tight_layout=False,
        title="Shared colour bar",
    ),
)
mp.save("Shared colour bar", dir_name="images")

More complex examples coming soon

util

Coming soon

sweep

Coming soon

(in the meantime, see scripts/make_logo.py which made the logo above, and unit tests for util, plotting, and sweep)

Unit tests

To run all unit tests, install pytest (these tests have previously been run with pytest version 5.4.1), and run the following command (at the time of writing, this takes about 17 seconds to run 42 unit tests, because several unit tests involve saving images or GIFs to disk):

pytest

Build package locally

jutility can be installed in "editable mode" using pip using the following command:

python -m pip install -e .

Alternatively, jutility can be built and installed locally using the following commands, replacing $WHEEL_NAME with the name of the wheel built by the python -m build command (for example, jutility-0.0.5-py3-none-any.whl):

python -m build
python -m pip install --force-reinstall --no-deps dist/$WHEEL_NAME

Or alternatively, run the script build_local.py, which automatically extracts the version number to infer the name of the wheel and then builds it:

python build_local.py

Updating package on PyPI

This package was uploaded to PyPI following the Packaging Python Projects tutorial in the official Python documentation.

To update PyPI with a newer version, update the version tag in setup.cfg, and then use the following commands:

rm -rf dist/*
python -m build
python -m twine upload dist/*

When prompted by twine, enter __token__ as the username, and paste an API token from the PyPI account management webpage as the password (including the pypi- prefix).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jutility-0.0.20.tar.gz (43.4 kB view details)

Uploaded Source

Built Distribution

jutility-0.0.20-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

File details

Details for the file jutility-0.0.20.tar.gz.

File metadata

  • Download URL: jutility-0.0.20.tar.gz
  • Upload date:
  • Size: 43.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for jutility-0.0.20.tar.gz
Algorithm Hash digest
SHA256 f39fb17b57cfe160e1b2926e972a6eb60d15b9801d7f52bd948f2d8e879f9e35
MD5 9216007cd72b097e11341ceb6c246710
BLAKE2b-256 3dc53883f3fec517a5a6f8f1738448d5f164efae8fbe892304a62d474fb6a9ce

See more details on using hashes here.

File details

Details for the file jutility-0.0.20-py3-none-any.whl.

File metadata

  • Download URL: jutility-0.0.20-py3-none-any.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for jutility-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 acaa638c92a4ac811ddafb1644188b37f470003c5e9bcf61084c1b58c5e249fa
MD5 6db147ba2bf2305c9a714e05bc441618
BLAKE2b-256 613c500918318ad02df83da2aaa7bdc5eca98d11bb688776e5655638ce4d1cec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page