Skip to main content

K-Means++ Clustering for Pandas DataFrames

Project description

K-means++ in Pandas
===================

An implementation of the [k-means++ clustering algorithm](http://en.wikipedia.org/wiki/K-means%2B%2B) using [Pandas](http://pandas.pydata.org/).

IMPORTANT NOTE
--------------

**This package should not be used in production.** The implementation of k-means++ contained therein is much slower than [that of scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html). Use that instead.

The only reason why I wrote any of this is to teach myself Pandas.

Prerequisites
-------------

* Python 2.7 or lower; this is not Python 3 compatible (yet).
* [Pandas](http://pandas.pydata.org/) (obviously).
* [NumPy](http://numpy.org)

Installation
------------

If you have [pip](http://www.pip-installer.org/en/latest/installing.html), then just do

pip install k-means-plus-plus

Otherwise,

* Clone the repository:

git clone https://github.com/jackmaney/k-means-plus-plus-pandas.git

* Enter the newly-created folder containing the repo

cd k-means-plus-plus-pandas

* And run the installation manually:

python setup.py install



Usage
-----

Here are the constructor arguments:

* `data_frame`: A Pandas data frame representing the data that you wish to cluster. Rows represent observations, and columns represent variables.

* `k`: The number of clusters that you want.

* `columns=None`: A list of column names upon which you wish to cluster your data. If this argument isn't provided, then all of the columns are selected. **Note:** Columns upon which you want to cluster must be numeric and have no `numpy.nan` values.

* `max_iterations=None`: The maximum number of times that you wish to iterate k-means. If no value is provided, then the iterations continue until stability is reached (ie the cluster assignments don't change between one iteration and the next).

* `appended_column_name=None`: If this value is set with a string, then a column will be appended to your data with the given name that contains the cluster assignments (which are integers from 0 to `k-1`). If this argument is not set, then you still have access to the clusters via the `clusters` attribute.

Once you've constructed a `KMeansPlusPlus` object, then just call the `cluster` method, and everything else should happen automagically. Take a look at the `examples` folder.

TODO:
----

* Add on features that take iterations of k-means++ clusters and compares them via, eg, concordance matrices, Jaccard indices, etc.

* Given a data frame, implement the so-called [Elbow Method](http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set#The_Elbow_Method) to take a stab at an optimal value for `k`.

* ~~Make this into a proper Python module that can be installed via pip.~~

* Python 3 compatibility (probably via six).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

k-means-plus-plus-0.1.0.tar.gz (5.0 kB view details)

Uploaded Source

File details

Details for the file k-means-plus-plus-0.1.0.tar.gz.

File metadata

File hashes

Hashes for k-means-plus-plus-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fe73020b4bc3701d96387584ec8aa7204acdc0e221a3793cbac0d8abed8fcde7
MD5 b78f055e3d134a1935ac32e3eca2f631
BLAKE2b-256 b663c9029b1a8b8915e76e49c65f363bcc812f55b5b9e282e38b3832c9c46fd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page