Skip to main content

kafka application endpoint

Project description

A lightweight application for consistent handling of kafka events

This application was developed to be a universal api endpoint for microservices that process kafka events.

Installation

pip install kafka-python-app

Usage

Configure and create application instance.

Configuration parameters:

  • app_name [OPTIONAL]: application name.
  • bootstrap_servers: list of kafka bootstrap servers addresses 'host:port'.
  • producer_config [OPTIONAL]: kafka producer configuration ( see kafka-python documentation).
# Default producer config
producer_config = {
    'key_serializer': lambda x: x.encode('utf-8') if x else x,
    "value_serializer": lambda x: json.dumps(x).encode('utf-8')
}
# Default consumer config
conf = {
    'group_id': str(uuid.uuid4()),
    'auto_offset_reset': 'earliest',
    'enable_auto_commit': False,
    'key_deserializer': lambda x: x.decode('utf-8') if x else x,
    'value_deserializer': lambda x: json.loads(x.decode('utf-8')),
    'session_timeout_ms': 25000
}
  • listen_topics: list of subscribed topics.
  • message_key_as_event [OPTIONAL]: set to True if using kafka message key as event name.

NOTE When setting message_key_as_event to True, make sure to specify valid key_deserializer in consumer_config.

  • message_value_cls [OPTIONAL]: dictionary {"topic_name": dataclass_type} that maps message dataclass type to specific topic. The application uses this mapping to create specified dataclass from kafka message.value.
  • middleware_message_cb [OPTIONAL]: if provided, this callback will be executed with raw kafka message argument before calling any handler.
  • emit_with_response_options [OPTIONAL]: configuration that supports use of the emit_with_response method
  • pipelines_map [OPTIONAL]: Dict[str, MessagePipeline] - provides mapping of a pipelint to event name or "topic.event" combination.
  • max_concurrent_tasks [OPTIONAL]: int - number of individual event handlers executed concurrently
  • max_concurrent_pipelines [OPTIONAL]: int - number of pipelines executed concurrently
  • logger [OPTIONAL]: any logger with standard log methods. If not provided, the standard python logger is used.
from kafka_python_app.app import AppConfig, KafkaApp


# Setup kafka message payload:
class MyMessage(pydantic.BaseModel):
    event: str
    prop1: str
    prop2: int


# This message type is specific for "test_topic3" only. 
class MyMessageSpecific(pydantic.BaseModel):
    event: str
    prop3: bool
    prop4: float


# Create application config
config = AppConfig(
    app_name='Test application',
    bootstrap_servers=['localhost:9092'],
    consumer_config={
        'group_id': 'test_app_group'
    },
    listen_topics=['test_topic1', 'test_topic2', 'test_topic3'],
    message_value_cls={
        'test_topic1': MyMessage,
        'test_topic2': MyMessage,
        'test_topic3': MyMessageSpecific
    }
)

# Create application
app = KafkaApp(config)

Create event handlers using @app.on decorator:

# This handler will handle 'some_event' no matter which topic it comes from
@app.on(event='some_event')
def handle_some_event(message: MyMessage, **kwargs):
    print('Handling event: {}..'.format(message.event))
    print('prop1: {}\n'.format(message.prop1))
    print('prop2: {}\n'.format(message.prop2))


# This handler will handle 'another_event' from 'test_topic2' only.
# Events with this name but coming from another topic will be ignored.
@app.on(event='another_event', topic='test_topic2')
def handle_some_event(message: MyMessage, **kwargs):
    print('Handling event: {}..'.format(message.event))
    print('prop1: {}\n'.format(message.prop1))
    print('prop2: {}\n'.format(message.prop2))


# This handler will handle 'another_event' from 'test_topic3' only.
@app.on(event='another_event', topic='test_topic3')
def handle_some_event(message: MyMessageSpecific, **kwargs):
    print('Handling event: {}..'.format(message.event))
    print('prop3: {}\n'.format(message.prop3))
    print('prop4: {}\n'.format(message.prop4))

NOTE: If topic argument is provided to @app.on decorator, the decorated function is mapped to particular topic.event key that means an event that comes from a topic other than the specified will not be processed. Otherwise, event will be processed no matter which topic it comes from.

Use message pipelines

The @app.on decorator is used to register a single handler for a message. However, now it is possible to pass a message through a sequence of handlers by providing a pipelines_map option into the application config. The pipelines_map is a dictionary of type Dict[str, MessagePipeline].

MessagePipeline class has following properties:

  • transactions: List[MessageTransaction]
  • logger (optional): any object that has standard logging methods (debug, info, error, etc.)

MessageTransaction has properties:

  • fnc: Callable - transaction function that takes message, somehow transforms it and returns it to next transaction in the pipeline. Every transaction function must have a signature: fnc(message, logger, **kwargs) and has to return message of the same type.

NOTE: Transaction function can be sync or async.

  • args: Dict - a dictionary of keyword arguments for transaction function.
  • pipe_result_options (optional): TransactionPipeWithReturnOptions - configuration to pipe message to another service (kafka app).

TransactionPipeResultOptions class properties:

  • pipe_event_name: str - event name that will be sent pipe_to_topic: str - destination topic with_response_options (optional): TransactionPipeWithReturnOptions - this config is used when pipeline needs to wait response from another service before proceeding to next transaction.

TransactionPipeWithReturnOptions class properties:

  • response_event_name: str - event name of the response
  • response_from_topic: str - topic name that the response should come from
  • cache_client: Any - client of any caching service that has methods get and set

get method signature: get(key: str) -> bytes

set method signature: set(name: str, value: bytes, ex: int (record expiration in sec))

  • return_event_timeout: int - timeout in seconds for returned event

TransactionPipeResultOptionsCustom class properties:

NOTE: Use this if you need to implement custom logic after transaction function is executed.

  • fnc: Callable - function that will be executed after transaction function is finished.

Function fnc signature: fnc(app_id: str, pipeline_name: str, message: Dict, emitter: [kafka app emit metod], message_key_as_event: bool, fnc_pipe_event, fnc_pipe_event_with_response, logger: [any logger supporting basic logging methods], **kwargs)

Function fnc_pipe_event signature: fnc( pipeline_name: str, message: Dict, emitter: [kafka app emit metod], message_key_as_event: bool, options: TransactionPipeResultOptions logger: [any logger supporting basic logging methods], **kwargs)

Function fnc_pipe_event_with_response signature: fnc(app_id: str, pipeline_name: str, message: Dict, emitter: [kafka app emit metod], message_key_as_event: bool, options: TransactionPipeResultOptions logger: [any logger supporting basic logging methods], **kwargs)

  • with_response_options: Optional[TransactionPipeWithReturnOptionsMultikey] - these option will be used by kafka app to register caching pipelines. This is the same as TransactionPipeWithReturnOptions buth instead of separate options response_event_name and response_from_topic there is a list of tuples (response_from_topic, response_event_name) called response_event_topic_keys.

Example:

Suppose we receive a string with each message and that string needs to be processed. Let's say we need replace all commas with a custom symbol and then add a number to the end of the string that correspond to the number of some substring occurrences.

from kafka_python_app.app import AppConfig, KafkaApp, MessagePipeline, MessageTransaction


# Define transaction functions
def txn_replace(message: str, symbol: str, logger=None):
  return message.replace(',', symbol)

def txn_add_count(message: str, substr: str, logger=None):
  return ' '.join([message, message.count(substr)])

# Define a pipeline
pipeline = MessagePipeline(
  transactions=[
    MessageTransaction(fnc=txn_replace, args={'symbol': '|'}),
    MessageTransaction(fnc=txn_add_count, args={'substr': 'foo'})
  ]
)

# Define a pipelines map
pipelines_map = {'some_event': pipeline}

# Create application config
config = AppConfig(
    app_name='Test application',
    bootstrap_servers=['localhost:9092'],
    consumer_config={
        'group_id': 'test_app_group'
    },
    listen_topics=['test_topic1'],
    pipelines_map=pipelines_map
)

# Create application
app = KafkaApp(config)

NOTE: Define pipelines_map keys in a format 'topic.event' in order to restrict pipeline execution to events that come from a certain topic.

Use app.emit() method to send messages to kafka:

from kafka_python_app import ProducerRecord

msg = ProducerRecord(
  key='my_message_key',
  value='my_payload'
)

app.emit(topic='some_topic', message=msg)

Use app.emit_with_response() method to send messages to kafka and wait for response event:

Specify emit_with_response_options in the application config.

EmitWithResponseOptions class properties:

  • topic_event_list: list of tuples (topic_name: str, event_name: str) for returned events. This defines what events and from what topics should be cached as "response" events.
  • cache_client: Any - client of any caching service that has methods get and set

get method signature: get(key: str) -> bytes

set method signature: set(name: str, value: bytes, ex: int (record expiration in sec))

  • return_event_timeout: int - timeout in seconds for returned event
from kafka_python_app import KafkaApp, AppConfig, \
  EmitWithResponseOptions, ProducerRecord, 

# Create application config
config = AppConfig(
    app_name='Test application',
    bootstrap_servers=['localhost:9092'],
    consumer_config={
        'group_id': 'test_app_group'
    },
    listen_topics=['test_topic1'],
    emit_with_response_options=EmitWithReturnOptions(
        event_topic_list=[
            ("test_topic_2", "response_event_name")
        ],
        cache_client=redis_client,
        return_event_timeout=30
    ),
)

# Create application
app = KafkaApp(config)
msg = ProducerRecord(
  value={"event": "test_event_name": "payload": "Hello?"}
)

response = app.emit_with_response(topic='some_topic', message=msg)

Start application:

if __name__ == "__main__":
    asyncio.run(app.run())

Use standalone kafka connector

The KafkaConnector class has two factory methods:

  • get_producer method returns kafka-python producer.
  • get_listener method returns instance of the KafkaListener class that wraps up kafka-python consumer and ** listen()** method that starts consumption loop.

Use ListenerConfig class to create listener configuration:

from kafka_python_app.connector import ListenerConfig

kafka_listener_config = ListenerConfig(
    bootstrap_servers=['ip1:port1', 'ip2:port2', ...],
    process_message_cb=my_process_message_func,
    consumer_config={'group_id': 'test_group'},
    topics=['topic1', 'topic2', ...],
    logger=my_logger
)
  • bootstrap_servers: list of kafka bootstrap servers addresses 'host:port'.
  • process_message_cb: a function that will be called on each message.
from kafka.consumer.fetcher import ConsumerRecord

def my_process_message_func(message: ConsumerRecord):
    print('Received kafka message: key: {}, value: {}'.format(
      message.key,
      message.value
    ))

NOTE: Use async function for process_message_cb in order to process messages concurrently.

  • consumer_config [OPTIONAL]: kafka consumer configuration ( see kafka-python documentation).
  • topics: list of topics to listen from.
  • logger [OPTIONAL]: any logger with standard log methods. If not provided, the standard python logger is used.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kafka_python_app-0.3.3.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

kafka_python_app-0.3.3-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file kafka_python_app-0.3.3.tar.gz.

File metadata

  • Download URL: kafka_python_app-0.3.3.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for kafka_python_app-0.3.3.tar.gz
Algorithm Hash digest
SHA256 50b4bd2305a46d2890c9dff1e8cacd76dedd0ec8b060ebe4c243a1962f4cc15e
MD5 b433e6d2e34c5edec3216d1ea465346e
BLAKE2b-256 eef1aac2a728326ef1aa810ebc7fef2318609e178dc96ad37ef73281cc58afd5

See more details on using hashes here.

File details

Details for the file kafka_python_app-0.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for kafka_python_app-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 aaa767a7f5a33ad0e596dae716edd25e462328b2d9268142bf665078af63c84a
MD5 4893c47bcde731ccec4f1382f716638b
BLAKE2b-256 ab2e710666c00280459a78d45e5795724dde92f4cb25ce5d4774b4b42f8340b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page