Skip to main content

Pure Python client for Apache Kafka

Project description

https://img.shields.io/badge/kafka-0.10%2C%200.9%2C%200.8.2%2C%200.8.1%2C%200.8-brightgreen.svg https://img.shields.io/pypi/pyversions/kafka-python.svg https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github https://travis-ci.org/dpkp/kafka-python.svg?branch=master https://img.shields.io/badge/license-Apache%202-blue.svg

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.10 or 0.9), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers, however; for example, fully coordinated consumer groups – i.e., dynamic partition assignment to multiple consumers in the same group – requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <http://kafka-python.readthedocs.org/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python’s inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic')
>>> for msg in consumer:
...     print (msg)
>>> # manually assign the partition list for the consumer
>>> from kafka import TopicPartition
>>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234')
>>> consumer.assign([TopicPartition('foobar', 2)])
>>> msg = next(consumer)
>>> # Deserialize msgpack-encoded values
>>> consumer = KafkaConsumer(value_deserializer=msgpack.loads)
>>> consumer.subscribe(['msgpackfoo'])
>>> for msg in consumer:
...     assert isinstance(msg.value, dict)

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer(bootstrap_servers='localhost:1234')
>>> for _ in range(100):
...     producer.send('foobar', b'some_message_bytes')
>>> # Block until all pending messages are sent
>>> producer.flush()
>>> # Block until a single message is sent (or timeout)
>>> producer.send('foobar', b'another_message').get(timeout=60)
>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')
>>> # Serialize json messages
>>> import json
>>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8'))
>>> producer.send('fizzbuzz', {'foo': 'bar'})
>>> # Serialize string keys
>>> producer = KafkaProducer(key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'1234')
>>> # Compress messages
>>> producer = KafkaProducer(compression_type='gzip')
>>> for i in range(1000):
...     producer.send('foobar', b'msg %d' % i)

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you must install lz4tools and xxhash (modules may not work on python2.6). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <http://kafka-python.readthedocs.org/en/master/install.html#optional-snappy-install> for more information.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 0.10).

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See <http://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer> for API details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kafka-python-1.2.1.tar.gz (187.1 kB view details)

Uploaded Source

Built Distribution

kafka_python-1.2.1-py2.py3-none-any.whl (173.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file kafka-python-1.2.1.tar.gz.

File metadata

File hashes

Hashes for kafka-python-1.2.1.tar.gz
Algorithm Hash digest
SHA256 5d68c7024f948f100073b41c5b300d5e1f10c170b808825e0c863eeb4e9cb9d4
MD5 f78865ebd2ce3425409f661065cc018e
BLAKE2b-256 d3df1a288787d8617574a36adcaaf5a9b776ada072077102cbc30f613e759e4e

See more details on using hashes here.

File details

Details for the file kafka_python-1.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for kafka_python-1.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 69ed53d3a5ad2fb027c1efbb91bca6aa2d3ecfd6bb2b54c299c32aecf89bcb48
MD5 20732eb7cd732377a8fab78905d0b06b
BLAKE2b-256 14519e31625c081d2569bf72b2068607a7aa15fb2c652a465338cd573df5a827

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page