Skip to main content

Pure Python client for Apache Kafka

Project description

https://img.shields.io/badge/kafka-0.10%2C%200.9%2C%200.8.2%2C%200.8.1%2C%200.8-brightgreen.svg https://img.shields.io/pypi/pyversions/kafka-python.svg https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github https://travis-ci.org/dpkp/kafka-python.svg?branch=master https://img.shields.io/badge/license-Apache%202-blue.svg

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.10 or 0.9), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers, however; for example, fully coordinated consumer groups – i.e., dynamic partition assignment to multiple consumers in the same group – requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <http://kafka-python.readthedocs.org/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python’s inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic')
>>> for msg in consumer:
...     print (msg)
>>> # manually assign the partition list for the consumer
>>> from kafka import TopicPartition
>>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234')
>>> consumer.assign([TopicPartition('foobar', 2)])
>>> msg = next(consumer)
>>> # Deserialize msgpack-encoded values
>>> consumer = KafkaConsumer(value_deserializer=msgpack.loads)
>>> consumer.subscribe(['msgpackfoo'])
>>> for msg in consumer:
...     assert isinstance(msg.value, dict)

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer(bootstrap_servers='localhost:1234')
>>> for _ in range(100):
...     producer.send('foobar', b'some_message_bytes')
>>> # Block until all pending messages are sent
>>> producer.flush()
>>> # Block until a single message is sent (or timeout)
>>> producer.send('foobar', b'another_message').get(timeout=60)
>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')
>>> # Serialize json messages
>>> import json
>>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8'))
>>> producer.send('fizzbuzz', {'foo': 'bar'})
>>> # Serialize string keys
>>> producer = KafkaProducer(key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'1234')
>>> # Compress messages
>>> producer = KafkaProducer(compression_type='gzip')
>>> for i in range(1000):
...     producer.send('foobar', b'msg %d' % i)

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you must install lz4tools and xxhash (modules may not work on python2.6). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <http://kafka-python.readthedocs.org/en/master/install.html#optional-snappy-install> for more information.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 0.10).

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See <http://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer> for API details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kafka-python-1.2.3.tar.gz (189.5 kB view details)

Uploaded Source

Built Distribution

kafka_python-1.2.3-py2.py3-none-any.whl (174.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file kafka-python-1.2.3.tar.gz.

File metadata

  • Download URL: kafka-python-1.2.3.tar.gz
  • Upload date:
  • Size: 189.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for kafka-python-1.2.3.tar.gz
Algorithm Hash digest
SHA256 d6302ecd3e33abd6038e97b86f52ed6170366d3ca997bd0c434fa4ae618a2f77
MD5 6e7c2fa0cdd8d6ba95d1657145edc3fe
BLAKE2b-256 3b01b781b9476c24ddf050777b5221519603ff32b69c6d3e112aca1e8c5d08d1

See more details on using hashes here.

File details

Details for the file kafka_python-1.2.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for kafka_python-1.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ea31ddc83fe74df2dc97db70aaad331ddf146b111e14f4469271c5b4165b2d88
MD5 a12c8dae8baaa088465951e44aec6748
BLAKE2b-256 f38ae6b94301ed5a944bae4d5a626405d87d3146ef252b7f3518c995d0200416

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page