tune with optuna and model LightGBM
Project description
Authors
kaggle-autolgb
kaggle autolgb is a combination of lightgbm and optuna. I tried to make kaggle monthly competition simple. Its only working with classification problem.
Installation
pip install kaggle-autolgb
Features
- autotune
- autotrain
- auto submission file generate
- auto prediction
Deployment
from autolgb import AutoLGB
model = AutoLGB(
train_file = "trainning file path",
test_file="testing file path",
store_file= "store file path",
storage_name = "store", # anything i.e: store/target/storage
label="dataset label column name",
num_folds=5, # num of num_folds
direction="maximize", # maximize or minimize
n_trials=2, # optuna trial
gpu=False # gpu usage
)
best = model.train() # returns best params
model.predict(best)
model.submission_kaggle_format("kaggle submission file")
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kaggle-autolgb-0.0.6.tar.gz
(8.0 kB
view details)
Built Distribution
File details
Details for the file kaggle-autolgb-0.0.6.tar.gz
.
File metadata
- Download URL: kaggle-autolgb-0.0.6.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 225337d01bc61cdb0dcc235af18d551b8d279f807cd3dc283cedd119811795a0 |
|
MD5 | ba71f350e4ba7f719736834a1d0984b6 |
|
BLAKE2b-256 | e79d06e14624b17d24b34de593ff170fcd25328570bb59194fdbf38df0aa6b14 |
File details
Details for the file kaggle_autolgb-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: kaggle_autolgb-0.0.6-py3-none-any.whl
- Upload date:
- Size: 11.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b673fa64cb3a29fbe72972e9d91757072e14ee3031bfd1430320dc86089d917 |
|
MD5 | 7d6b75e7361bc79f99aedd4d733ba926 |
|
BLAKE2b-256 | 929e4a6304a4261b0cc27de2707541191ac7c766a4fa5b3ef728f74f5db596a0 |