Skip to main content

Time series data storage using Redis and Mongo

Project description

Version:
0.4.0
Download:

http://pypi.python.org/pypi/kairos

Source:

https://github.com/agoragames/kairos

Keywords:

python, redis, mongo, time, timeseries, rrd, gevent, statistics

Overview

Kairos provides time series storage using Redis or Mongo backends. Kairos is intended to replace RRD and Whisper in situations where the scale and flexibility of Redis or Mongo is required. It works with gevent out of the box.

Recommended for python 2.7 and later, it can work with previous versions if you install OrderedDict.

Usage

Kairos supports redis and mongo storage using the same API.

Redis

from kairos import Timeseries
import redis

client = redis.Redis('localhost', 6379)
t = Timeseries(client, type='histogram', read_func=int, intervals={
  'minute':{
    'step':60,            # 60 seconds
    'steps':120,          # last 2 hours
  }
})

t.insert('example', 3.14159)
t.insert('example', 2.71828)
print t.get('example', 'minute')

Mongo

from kairos import Timeseries
import pymongo

client = pymongo.MongoClient('localhost')
t = Timeseries(client, type='histogram', read_func=int, intervals={
  'minute':{
    'step':60,            # 60 seconds
    'steps':120,          # last 2 hours
  }
})

t.insert('example', 3.14159)
t.insert('example', 2.71828)
print t.get('example', 'minute')

Each Timeseries will store data according to one of the supported types. The keyword arguments to the constructor are:

type
  One of (series, histogram, count). Optional, defaults to "series".

  series - each interval will append values to a list
  histogram - each interval will track count of unique values
  count - each interval will maintain a single counter
  gauge - each interval will store the most recent data point

prefix
  Optional, Redis only, is a prefix for all keys in this timeseries. If
  supplied and it doesn't end with ":", it will be automatically appended.

read_func
  Optional, is a function applied to all values read back from the
  database. Without it, values will be strings for Redis, whatever
  `write_func` defined for Mongo. Must accept a string value for Redis
  (empty string for no data) and can return anything.

write_func
  Optional, is a function applied to all values when writing. Can be
  used for histogram resolution, converting an object into an id, etc.
  Must accept whatever can be inserted into a timeseries and return an
  object which can be saved according to the rules of Redis or Mongo.

intervals
  Required, a dictionary of interval configurations in the form of:

  {
    # interval name, used in Redis and Mongo keys and should conform to best
    # practices according to the backend type.
    minute: {

      # Required. The number of seconds that the interval will cover,
      # or a supported Gregorian interval.
      step: 60,

      # Optional. The maximum number of intervals to maintain. If supplied,
      # will use Redis and Mongo expiration to delete old intervals, else
      # intervals exist in perpetuity.
      steps: 240,

      # Optional. Defines the resolution of the data, i.e. the number of
      # seconds in which data is assumed to have occurred "at the same time".
      # So if you're tracking a month-long time series, you may only need
      # resolution down to the day, or resolution=86400. Defaults to same
      # value as "step". Can also be a Gregorian interval.
      resolution: 60,
    }
  }

In addition to specifying step and resolution in terms of seconds, kairos also supports a simplified format for larger time intervals. For hours (h), days (d), weeks (w), months (m) and years (y), you can use the format 30d to represent 30 days, for example.

As of 0.3.0, kairos also supports the Gregorian calendar for step and resolution. Either or both parameters can use the terms [daily, weekly, monthly, yearly] to describe an interval. You can also mix these terms with the time periods defined in terms of seconds (e.g. daily in 1h resolutions). The expiration time for Gregorian dates is still defined in terms of seconds and may not match the varying month lengths, leap years, etc. Gregorian dates are translated into strptime- and strftime-compatible keys are so may be easier to use in raw form or any integrated tools.

Each retrieval function will by default return an ordered dictionary, though condensed results are also available. Run script/example to see standard output; watch -n 4 script/example is a useful tool as well.

Inserting Data

There is one method to insert data, Timeseries.insert which takes the followng arguments:

  • name The name of the statistic

  • value The value of the statistic (optional for count timeseries)

  • timestamp (optional) The timestamp of the statstic, defaults to time.time() if not supplied

For series and histogram timeseries types, value can be whatever you’d like, optionally processed through the write_func method before being written to storage. Depending on your needs, value (or the output of write_func) does not have to be a number, and can be used to track such things as unique occurances of a string or references to other objects, such as MongoDB ObjectIds.

For the count type, value is optional and should be a float or integer representing the amount by which to increment or decrement name; it defaults to 1.

For the gauge type, value can be anything and it will be stored as-is.

Data for all timeseries is stored in “buckets”, where any Unix timestamp will resolve a consistent bucket name according to the step and resolution attributes of a schema. A bucket will contain the following data structures for the corresponding series type.

  • series list

  • histogram dictionary (map)

  • count integer or float

Reading Data

There are two methods to read data, Timeseries.get and Timeseries.series. get will return data from a single bucket, and series will return data from several buckets.

get

Supports the following parameters:

  • name The name of the statistic, or a list of names whose data will be joined together.

  • interval The named interval to read from

  • timestamp (optional) The timestamp to read, defaults to time.time()

  • condensed (optional) If using resolutions, True will collapse the resolution data into a single row

  • transform (optional) Optionally process each row of data. Supports [mean, count, min, max, sum], or any callable that accepts datapoints according to the type of series (e.g histograms are dictionaries, counts are integers, etc). Transforms are called after read_func has cast the data type and after resolution data is optionally condensed.

Returns a dictionary of { timestamp : data }, where timestamp is a Unix timestamp and data is a data structure corresponding to the type of series, or whatever transform returns. If not using resolutions or condensed=True, the length of the dictionary is 1, else it will be the number of resolution buckets within the interval that contained data.

series

Almost identical to get, supports the following parameters:

  • name The name of the statistic, or a list of names whose data will be joined together.

  • interval The named interval to read from

  • start (optional) The timestamp which should be in the first interval of the returned data.

  • end (optional) The timestamp which should be in the last interval of the returned data.

  • steps (optional) The number of steps in the interval to read, defaults to either steps in the configuration or 1. Ignored if both start and end are defined. If either start or end are defined, steps is inclusive of whatever interval that timestamp falls into.

  • condensed (optional) If using resolutions, True will collapse the resolution data into a single row

  • transform (optional) Optionally process each row of data. Supports [mean, count, min, max, sum], or any callable that accepts a list of datapoints according to the type of series (e.g histograms are dictionaries, counts are integers, etc). Transforms are called after read_func has cast the data type and after resolution data is optionally condensed.

  • collapse (optional) Optionally collapse all of the data in the date range into a single result.

Returns an ordered dictionary of { interval_timestamp : { resolution_timestamp: data } }, where interval_timestamp and resolution_timestamp are Unix timestamps and data is a data structure corresponding to the type of series, or whatever transform returns. If not using resolutions or condensed=True, the dictionary will be of the form { interval_timestamp : data }.

If both start and end are defined, the returned data will start and end on intervals including those timestamps. If only start is defined, then the return data will start with an interval that includes that timestamp, with the total number of intervals returned defined by steps. If only end is defined, then the return data will end with an interval that includes that timestamp, with the total number of intervals preceeding it defined by steps.

It is important to note that the interval timestamps in the returned data will not necessarily match start or end. This is because of the consistent hashing scheme that kairos uses, such that start and end will be translated into the bucket in which it can be found.

Deleting Data

To delete the data, call Timeseries.delete with the name of your statistic, and all values in all intervals will be deleted.

Dragons!

Kairos achieves its efficiency by using Redis or Mongo TTLs and data structures in combination with a key naming scheme that generates consistent keys based on any timestamp relative to epoch. However, just like RRDtool, changing any attribute of the timeseries means that new data will be stored differently than old data. For this reason it’s best to completely delete all data in an old time series before creating or querying using a new configuration.

Installation

Kairos is available on pypi and can be installed using pip

pip install kairos

If installing from source:

  • with development requirements (e.g. testing frameworks)

    pip install -r development.pip
  • without development requirements

    pip install -r requirements.pip

Note that kairos does not by default require the redis package, nor does it require hiredis though it is strongly recommended.

Tests

Use nose to run the test suite.

$ nosetests

Roadmap

  • Round-robbin intervals for datastores without TTLs

  • Round-robbin databases: memcache (and compatible, e.g. ElastiCache), Riak, DynamoDB, SimpleDB, more

  • Redis optimizations

  • Bloom filters

  • “Native” transforms that leverage data store features (e.g. “length”)

  • Joined series populate a data structure at query time

  • Joined series support concurrency “runner”

License

This software is licensed under the New BSD License. See the LICENSE.txt file in the top distribution directory for the full license text.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kairos-0.4.0.tar.gz (20.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page