Skip to main content

Kaldi alignment methods wrapped into Python

Project description

kaldialign

A small package that exposes edit distance computation functions from Kaldi. It uses the original Kaldi code and wraps it using pybind11.

Installation

conda install -c kaldialign kaldialign

or

pip install --verbose kaldialign

or

pip install --verbose -U git+https://github.com/pzelasko/kaldialign.git

or

git clone https://github.com/pzelasko/kaldialign.git
cd kaldialign
python3 -m pip install --verbose .

Examples

Alignment

align(ref, hyp, epsilon) - used to obtain the alignment between two string sequences. epsilon should be a null symbol (indicating deletion/insertion) that doesn't exist in either sequence.

from kaldialign import align

EPS = '*'
a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
ali = align(a, b, EPS)
assert ali == [('a', 'a'), ('b', 's'), (EPS, 'x'), ('c', 'c')]

Edit distance

edit_distance(ref, hyp) - used to obtain the total edit distance, as well as the number of insertions, deletions and substitutions.

from kaldialign import edit_distance

a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
results = edit_distance(a, b)
assert results == {
    'ins': 1,
    'del': 0,
    'sub': 1,
    'total': 2
}

For alignment and edit distance, you can pass sclite_mode=True to compute WER or alignments based on SCLITE style weights, i.e., insertion/deletion cost 3 and substitution cost 4.

Bootstrapping method to extract WER 95% confidence intervals

boostrap_wer_ci(ref, hyp, hyp2=None) - obtain the 95% confidence intervals for WER using Bisani and Ney boostrapping method.

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
ans = bootstrap_wer_ci(ref, hyp)
assert ans["wer"] == 0.4989
assert ans["ci95"] == 0.2312
assert ans["ci95min"] == 0.2678
assert ans["ci95max"] == 0.7301

It also supports providing hypotheses from system 1 and system 2 to compute the probability of S2 improving over S1:

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
hyp2 = [
    ("a", "b", "c"),
    ("e", "e", "f"),
]
ans = bootstrap_wer_ci(ref, hyp, hyp2)

s = ans["system1"]
assert s["wer"] == 0.4989
assert s["ci95"] == 0.2312
assert s["ci95min"] == 0.2678
assert s["ci95max"] == 0.7301

s = ans["system2"]
assert s["wer"] == 0.1656
assert s["ci95"] == 0.2312
assert s["ci95min"] == -0.0656
assert s["ci95max"] == 0.3968

assert ans["p_s2_improv_over_s1"] == 1.0

Motivation

The need for this arised from the fact that practically all implementations of the Levenshtein distance have slight differences, making it impossible to use a different scoring tool than Kaldi and get the same error rate results. This package copies code from Kaldi directly and wraps it using pybind11, avoiding the issue altogether.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kaldialign-0.9.1-cp312-cp312-win_amd64.whl (70.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

kaldialign-0.9.1-cp312-cp312-win32.whl (62.3 kB view details)

Uploaded CPython 3.12 Windows x86

kaldialign-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (92.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

kaldialign-0.9.1-cp312-cp312-macosx_10_9_universal2.whl (115.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9.1-cp311-cp311-win_amd64.whl (70.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

kaldialign-0.9.1-cp311-cp311-win32.whl (61.8 kB view details)

Uploaded CPython 3.11 Windows x86

kaldialign-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

kaldialign-0.9.1-cp311-cp311-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9.1-cp310-cp310-win_amd64.whl (70.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

kaldialign-0.9.1-cp310-cp310-win32.whl (61.7 kB view details)

Uploaded CPython 3.10 Windows x86

kaldialign-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

kaldialign-0.9.1-cp310-cp310-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9.1-cp39-cp39-win_amd64.whl (70.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

kaldialign-0.9.1-cp39-cp39-win32.whl (62.0 kB view details)

Uploaded CPython 3.9 Windows x86

kaldialign-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (92.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

kaldialign-0.9.1-cp39-cp39-macosx_10_9_universal2.whl (113.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9.1-cp38-cp38-win_amd64.whl (70.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

kaldialign-0.9.1-cp38-cp38-win32.whl (61.7 kB view details)

Uploaded CPython 3.8 Windows x86

kaldialign-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (87.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

kaldialign-0.9.1-cp38-cp38-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.9.1-cp37-cp37m-win_amd64.whl (70.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

kaldialign-0.9.1-cp37-cp37m-win32.whl (62.6 kB view details)

Uploaded CPython 3.7m Windows x86

kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (93.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (89.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file kaldialign-0.9.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c6090ef4ebdaf95fa78b46d7eda05b7367d8d889228a67696217487d4ceb783c
MD5 199dd3d651659d79ce2259b694c4b220
BLAKE2b-256 83b2aac02ff83128f8068898ad37eb0077cecad0548d1207ec0ff5f61107f8e2

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 62.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c28620c352ecfb016b35579c3b52a4d049aba54c1e9a448d4bef88de1a8566c8
MD5 0da0498249f2312c1a7ff7c3d3d13d2c
BLAKE2b-256 87564a9cd8468c6a3afd32ee29059e36e9b28dab41c37e49be979def88697166

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9dc8455832caf4316a7674676098e4e9cc2c0f50428c7105e24c1c767bebd6e
MD5 92cd21667a79ffe8cffb685096eda549
BLAKE2b-256 a125acca269c3b9e219d4611c7f9b966e884521b61c899750343b3548bc6393b

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdaf85389756a1caf6ad95754480768195aea30e57f4ce741b6d385a84c6efd9
MD5 1ec149cb5d596553b2a869ff8e56622c
BLAKE2b-256 f0e4b2c2b4dfb88677b1868ed9366ed415d93360c47615a53e189d375b986de4

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7112ff9f52c960825293cd3e8586094d700344c625cd4e75138408ace780402e
MD5 7337a4b331415197c310de100d20dc4c
BLAKE2b-256 4299207f45fd2b02f431c40e620cc41b3c6af8078a192482668840df52dad592

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c31e613c81fcbdd18496ed79066d44b1a44273eab223327c51e03964f5f561f2
MD5 274b51b104882e49a05ad293f574d66d
BLAKE2b-256 76417b0d974b0104d232e69bd30350ce92d7de60ae65f33bbe92ad5d834d81aa

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 61.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5b03ee410c8829db325cc4b64a3cebb0614b9a500e41335a0e70604a227c5a29
MD5 6c9d65bf77ebc6604762e59bcae9a43e
BLAKE2b-256 5a60ddd1d78f85bd093d92eee78a4ae38dc778be8b73918a44153767c5d5c85d

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49a7eb2790acfa9e50409c4253fd785e0ecb0a23cc123bc97f1b06caf6382f8f
MD5 f674b04ec7393b32f9889ce087bce2a0
BLAKE2b-256 862c6adf305326f48bac470985069036e2eb1ed198fcbd8a5ca04d8055c4373f

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 886386e06bee54929b5a56ac7693bcd22dd6568e257a0e15a58946eb5cb64bd9
MD5 ee081a9efd36b6fe93ad06fb2ae05469
BLAKE2b-256 a5d91effbcd3e7b8a5975d9661ea232f28d1694748676184e5ce21a61398a940

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 14991bef6400fe6f93f6ebbc5923b9baa5bb5f979baa66cb5e116496b030192d
MD5 f23bb62ed150dcef74466fda9175db2c
BLAKE2b-256 1d6f5d4ecd96842e5a6ba1288095daa35264e79d3e72fac326a7a2a80d1220f9

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 80c17a8723589291f68daece92f25c98bad21d49ecaf8d64b158ba343e79f5bd
MD5 2e076424a8608192f782523cc5528213
BLAKE2b-256 8557d3e270229acd86207d06e1ed5ef0f5aba572877cdd671004f4cd6656b60d

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 61.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 154725a816022632f166ea842c7becd7236f6d7dffc82f6549f36a5c940c8a1e
MD5 4db830d37c0484916ed1177d245c9418
BLAKE2b-256 61ecd62225522e188bc70950f8c0a07a5c945018f39cb3660ce690c7b2e5ddd1

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a3f7af4ee8180d05cba148de79a6c81ea7f17822bb31707c1b00b9d9d5b5d50
MD5 86e814eb6e1a8e570bda8ffe44a0e811
BLAKE2b-256 c7b02d074f332743993f0938021d730fa1f6735f4312ada4245d4ad97295c8a1

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d75a3a1716b299225e8b6f6ec2f6300dccae0ee35cf5bd2b40e493a89f13bb8
MD5 739d35655878af09087e5d8f561f051f
BLAKE2b-256 99d06791cf1e0aac7e2dcb4430397b48046654a1109dbe8ab40f92c0c3cd07c7

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 026f713cf18e272ef35602acb55294a92a7245ff94a3c45dcce0c3090f20d115
MD5 3ea8d7e55edf75eb248e572826a9cca4
BLAKE2b-256 d2a0f94eee8b64d7d20bac0725baf8221223e033a76387f9677845893dbcea4d

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6a92738abc4100f2e2e5ae9fc50311491550af4fbfe3dddec1438263a4132bc4
MD5 3f3d714f51a70345e1d85130eee6b2ce
BLAKE2b-256 d3169b215d9cebe397f937c39c890a6ed8eafea941b51d35728565ad386afaef

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 62.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b5d15974a86f3899aea2557f961b516f0a15157919663b50a89b6e5a17e54801
MD5 7a97d8d450fff6f90ff29b2eba024eb4
BLAKE2b-256 cee8eab1e587d9acca69baa880f0ebbfe5a4f942b494fbcbdfc29dadc8dacbb1

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0b6efd8d014f101098642ec2d99ee9a3d0c780c818e6e6ce5c18b6f4240f799
MD5 4135f43aa6fb1ff27b545244e0dc10f1
BLAKE2b-256 f87ce013269eb08b62d17f95ac3071fce96d39f521974a77665590c38dfdccb5

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8abb5daffe21987ab34c8ed6e6b5cfd15055d4dc8e5234bf5611279396f49e55
MD5 7268bec71a10b79bff8b686b644539a5
BLAKE2b-256 d18d462123424fca571297dcdd0bf1c9ee16c6b013d06716822e50f6bc040eea

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ceab2a7da2d56358570eccf6e05e401e0164a4eff608755353954df57143f11c
MD5 211e1ba66d711e024945f98c950138b4
BLAKE2b-256 38697742e25757759dc690026edd7e54b505fff343040bb5e40aa5e1470816f1

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1dcee8cf8e2f7524344aa5d422d8e6eebe7cc347408731625d5b712d503e6fc7
MD5 1deb5e270e40d6d45d4196188ffe2a1d
BLAKE2b-256 d3984518b51072391932579e7ba79797f010ae1f8507a44b1d469e32bcf47f3e

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 61.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5269cb0aaf9039022e9e73a340dce21c2e00f682949681c551740420d6f669f0
MD5 4703171f74a50364a51316a03e9400b6
BLAKE2b-256 a3954a0a0f2943384d9e1629cfe99ef97ee31765dee506d44cf7ee408b00f8ac

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83dd99a0953456ec6185e3d2a3ae916d34c0c1ccea879e552584b05fe60c7c49
MD5 5239a41264a4bda9a88679dad0e5e501
BLAKE2b-256 6a9962a646be9ed10f0119c58002656ef8946368d1450ec80611aed8d5c05a71

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3e766a27a45c93d351ab54bbd87a5a841af678d7d419fd0b4e24e5daac6189c
MD5 3f14a12e9110a7dcc14a20c910d00694
BLAKE2b-256 1810420bb8b1ab29bca654db258c0844f96f9b330acf4198c18a95078abdf8f0

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c5852149e03b542aa9f953cb36dcf5edbd8b14defeecf321ad8fa86c8f29e461
MD5 73c8a564ee45c54dabca97ff6899aaca
BLAKE2b-256 d875d85fc77208a46c2d0494bfb5a7ecf62a4b7e6eca72e97abe6aed035a4271

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3cfbda69dece6cc1797a51a483707495194b868463dadbb51194e2f284678311
MD5 aa05ea1070397c2c5b5bbefeb856c89a
BLAKE2b-256 d06d0cccd25b04e0e9adb8b1dee3302b4599c30b98d9580a6456e3f700d6385b

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: kaldialign-0.9.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 62.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.9.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8669512dd0a964cc8c2a5274f4e3e39969ec063ec0b99ec403efef9d3d3534ca
MD5 dc6b00749ef06160021be0fe5e7b4517
BLAKE2b-256 380c5cb920dcce99e6f03882a6a3d94046adcb8c1b1228e1caaaf1f792034867

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43e1341d5f7acb9dc47922f06b66dc3530fdef2c5a33e27a65a7d32b296504fa
MD5 bccff411f0e9eb0ca7a7ac1f9fdef288
BLAKE2b-256 8e0a95e389eea98c1440c81422803cdbff7b929c60772ff87882a4d56ec100e9

See more details on using hashes here.

File details

Details for the file kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c422c2cb4242388f7002c8db556cea3c72840bc75ec821dc8c0ff73da2263c8b
MD5 3a1e20486edc7ba699df76d6b5e29c91
BLAKE2b-256 593d2c0c45ffa11d98c16e2382ede660fca3e6fb2201b6714fca729f57c2e84f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page