Skip to main content

Kaldi alignment methods wrapped into Python

Project description

kaldialign

A small package that exposes edit distance computation functions from Kaldi. It uses the original Kaldi code and wraps it using pybind11.

Installation

conda install -c kaldialign kaldialign

or

pip install --verbose kaldialign

or

pip install --verbose -U git+https://github.com/pzelasko/kaldialign.git

or

git clone https://github.com/pzelasko/kaldialign.git
cd kaldialign
python3 -m pip install --verbose .

Examples

Alignment

align(ref, hyp, epsilon) - used to obtain the alignment between two string sequences. epsilon should be a null symbol (indicating deletion/insertion) that doesn't exist in either sequence.

from kaldialign import align

EPS = '*'
a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
ali = align(a, b, EPS)
assert ali == [('a', 'a'), ('b', 's'), (EPS, 'x'), ('c', 'c')]

Edit distance

edit_distance(ref, hyp) - used to obtain the total edit distance, as well as the number of insertions, deletions and substitutions.

from kaldialign import edit_distance

a = ['a', 'b', 'c']
b = ['a', 's', 'x', 'c']
results = edit_distance(a, b)
assert results == {
    'ins': 1,
    'del': 0,
    'sub': 1,
    'total': 2
}

For alignment and edit distance, you can pass sclite_mode=True to compute WER or alignments based on SCLITE style weights, i.e., insertion/deletion cost 3 and substitution cost 4.

Bootstrapping method to extract WER 95% confidence intervals

boostrap_wer_ci(ref, hyp, hyp2=None) - obtain the 95% confidence intervals for WER using Bisani and Ney boostrapping method.

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
ans = bootstrap_wer_ci(ref, hyp)
assert ans["wer"] == 0.4989
assert ans["ci95"] == 0.2312
assert ans["ci95min"] == 0.2678
assert ans["ci95max"] == 0.7301

It also supports providing hypotheses from system 1 and system 2 to compute the probability of S2 improving over S1:

from kaldialign import bootstrap_wer_ci

ref = [
    ("a", "b", "c"),
    ("d", "e", "f"),
]
hyp = [
    ("a", "b", "d"),
    ("e", "f", "f"),
]
hyp2 = [
    ("a", "b", "c"),
    ("e", "e", "f"),
]
ans = bootstrap_wer_ci(ref, hyp, hyp2)

s = ans["system1"]
assert s["wer"] == 0.4989
assert s["ci95"] == 0.2312
assert s["ci95min"] == 0.2678
assert s["ci95max"] == 0.7301

s = ans["system2"]
assert s["wer"] == 0.1656
assert s["ci95"] == 0.2312
assert s["ci95min"] == -0.0656
assert s["ci95max"] == 0.3968

assert ans["p_s2_improv_over_s1"] == 1.0

Motivation

The need for this arised from the fact that practically all implementations of the Levenshtein distance have slight differences, making it impossible to use a different scoring tool than Kaldi and get the same error rate results. This package copies code from Kaldi directly and wraps it using pybind11, avoiding the issue altogether.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kaldialign-0.8.1-cp312-cp312-win_amd64.whl (65.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

kaldialign-0.8.1-cp312-cp312-win32.whl (57.7 kB view details)

Uploaded CPython 3.12 Windows x86

kaldialign-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (84.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (80.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

kaldialign-0.8.1-cp312-cp312-macosx_10_9_universal2.whl (103.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.8.1-cp311-cp311-win_amd64.whl (64.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

kaldialign-0.8.1-cp311-cp311-win32.whl (57.1 kB view details)

Uploaded CPython 3.11 Windows x86

kaldialign-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (84.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (80.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

kaldialign-0.8.1-cp311-cp311-macosx_10_9_universal2.whl (102.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.8.1-cp310-cp310-win_amd64.whl (65.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

kaldialign-0.8.1-cp310-cp310-win32.whl (57.1 kB view details)

Uploaded CPython 3.10 Windows x86

kaldialign-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (84.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (80.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

kaldialign-0.8.1-cp310-cp310-macosx_10_9_universal2.whl (102.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.8.1-cp39-cp39-win_amd64.whl (65.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

kaldialign-0.8.1-cp39-cp39-win32.whl (57.2 kB view details)

Uploaded CPython 3.9 Windows x86

kaldialign-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (84.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (80.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

kaldialign-0.8.1-cp39-cp39-macosx_10_9_universal2.whl (102.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.8.1-cp38-cp38-win_amd64.whl (64.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

kaldialign-0.8.1-cp38-cp38-win32.whl (57.1 kB view details)

Uploaded CPython 3.8 Windows x86

kaldialign-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (84.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (80.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

kaldialign-0.8.1-cp38-cp38-macosx_10_9_universal2.whl (102.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

kaldialign-0.8.1-cp37-cp37m-win_amd64.whl (65.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

kaldialign-0.8.1-cp37-cp37m-win32.whl (57.8 kB view details)

Uploaded CPython 3.7m Windows x86

kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (85.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file kaldialign-0.8.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 55ed33f4a9fc24a3afa8d276182a195323b72db683dc96bcb95398e7668ee307
MD5 037bd2f5c8d66f1d38b78198e2017411
BLAKE2b-256 ad66fa27c6930c5198a500d88f1d4dc2b4987819a5cd0040e558dd592af19559

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 57.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 3a5c4ff12ea1fddbb9675c8ea453fdda5b4eb1e0a552e76f2e9d0faf3d2e6223
MD5 b882d50f2d905d4391c7a54ea98d086d
BLAKE2b-256 f4d91461a353e5cfc51429b659418b4884ebbdd7080eef34ff78158fd062df29

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c477140029ef5433fc05468d2262b56d3007c9b873039c8cec6cbb0f86cca73
MD5 9e207a30f84be7e67b1d540189d7cfed
BLAKE2b-256 5521fd2b6dc2a34479f0e904a382d2cee149cd7d7f446cb3a328129306940bb9

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0c7f9ce18b1f6d685a8abf793e02de5561d7d4ef1c469fa2dd2c9395abfc9be
MD5 f2f95f191b94d872ab4c7a3152e16b9e
BLAKE2b-256 91b09c6f55a086048ff7b07e5a9b87b557562abe44f2b0f71ab5268664f0f70f

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3297b21e1596b20f39442f27f917e92a83fe7fe2dfc4aae0dab06d5993db598e
MD5 ca9624b78539a71fba1a45f3d24a0f22
BLAKE2b-256 e52b44beecd2b6f7e65c8c6863ccef2f751ac3be9f6256f680354742ea7a7319

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6654c69e3aec80612f5e3cbf9b13abb9af083ba1a99911de7710b5b4ed76860b
MD5 65d200b06e4a67191a659bd4bef64895
BLAKE2b-256 be1df785e5a508f099d83b89f577b14b5f702e3297a21d3e2ec672cdccb57a41

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 57.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 36d737da498791e12dd8fb301190ea12282e0c581702649dce66f76efd5b40c7
MD5 f83c6bc4e6956e0a90205eb5eb20a151
BLAKE2b-256 e758a9513b48b98415b300532aedd014abab43e76d6916933f736bf8f102ada2

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bf24595628938aba28199550dfc24d55497c934e00fce3e958299c85721f7e8
MD5 6678487fb620dd08eca7faf6f157505a
BLAKE2b-256 83a49108f5fa00313248fd40c245517fe72a17b19654c22c7791066bfb9e048d

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e76754707218018897bc805d59b39f7fc8f5816472a37939f64a6eca08da2a9e
MD5 96dc3b5bb5de3f203bae1cd3669261f4
BLAKE2b-256 60028875eeef6d28771ed31e81ec688f5bcebdc401711c47870c396bb825d5f3

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 98345027cd1b4a05d6ca9a5be68c1d2cdacfa73f8e99d52b11d23d22e1ad9a38
MD5 01888b1ec606d67fe077abb3e6b45f6d
BLAKE2b-256 bb5546d63bd199ee44b099df0123ea0adcba17b4eeee075ed2831f4ee43190c8

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e5d4215c6216b0bfe1f83ca44329c7d14c35ab188c95a7823ba8dc4c0f183731
MD5 babf6aeb615efcc75a64766fdaf2d805
BLAKE2b-256 1359f8f0fe0f0ab670f41d6080d568eea719e3ab68097f58ebe6b4730ccb302b

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 57.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7b03e0bbd8d3ea5a0d71ec6fc03ce0cf226a63be1f7d82475c9f5debf1a784a0
MD5 bab7bda8d79e7ebe53fc5390cdaa7581
BLAKE2b-256 5c3ab78e10ec6579d5314ce1e28809c17b99fc799ba9896427650ee3dbdbb535

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f49856fc22f44a9702616d01ef093a469030d3bbf0abae56ee5f8cb34e031eed
MD5 22100e50299e40f3cde13a8fc56261e3
BLAKE2b-256 c6bb14b41251d7f4c72bb61f43ea8e53e9098725d8eda00b598500e3b457b7b1

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 753a843694581db6f021d5246a7c31ada7fa041f0b409e19ed1f44086a3ef361
MD5 3e8814e6cea1c520c0ced3edf59c9dcc
BLAKE2b-256 7cd2e3a4f809e25b4b1220bec0ba901a92baac0197962918dfc853995708623c

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 72a6a13680dddadac66624c4cac6635ba8e1f25a3fa996208e71797d0c954022
MD5 b6e8d5b7e6bac97ff3a369c8daffbda5
BLAKE2b-256 50abc8035a7e708f95513abdd755d29d8efac2139763d21e5909f258efad7529

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 47463a6af056011ae801d7974bbd182c0f8f93808dec6b4b85345a9d7f9cf281
MD5 a77dba3b5effecf2e86438811a282427
BLAKE2b-256 dce00ba85da3485353b3e829484bc6797acea7d4c10357415aee74e3a74afc2e

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 57.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f5ed9f46f3318751b837cfe42b6888c1fdff5b84f66f5f0c27776586566735f2
MD5 2325270016e6712474920aa437d65e2c
BLAKE2b-256 93d32a1dad1952714f62888a107e78b4bfaf5ab81c758fe8bf59e99e0a1f512a

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a36dc43319f1a96bed9f922b03937653a867ce12d2cf47aba7a5f194da9530c
MD5 958969a7b0e5bbde61e31f62a73a350e
BLAKE2b-256 654262f9ba9dd7534ad670184303a1ed13a824e6b843d6fb1aecf2f0586307bf

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40c141e3418f10cdc58d7eceed2facf04c5cb5bb50215c4ec1e22fbd413d9c4c
MD5 cdc8fc77b4ffa9f91a5e626d0b547b5b
BLAKE2b-256 2bb35bed3ce3e7c16f4a92827b5f464d05ea6f5cd7a2840a5bce907c33e02e96

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ddd1c97009e7da09808c6643842c14e6ff40366b380355dc1c86c4d34e9a5232
MD5 e7ee35aed763872ab02e14e3cf8ce340
BLAKE2b-256 14e305ea0261b28d7bc127f7fb015e8a02f1badead60fe04a347ba8ba26ca418

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 60eaf7b5cee385cb5f3850ddb853bc23278b62245ec9157e3846108b4f273f6f
MD5 d8212f7bd2282026d1216b228a0cd399
BLAKE2b-256 062c65ad40656c2c35893f957d88b26abf8468f93100fc74b32a2413a977eeae

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 57.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fa9a597d142880f840574f3430a8f1e2ec40936156ed00562d19405d337105e3
MD5 f9f989b0bda2cb32cb20cdf83fd94a4b
BLAKE2b-256 a99c9990de081a2ed7e2457bb87b2226959349929def00bfa34f2bc4c964a04a

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ba9bda582b88a7a362656856ad8a07cee29061937ae7f0d435eaac0884f9fee
MD5 04e4d65a01a091719879677aba6d651a
BLAKE2b-256 02fe1d3fa096307cfae9cc4d07013107643f07d1f4a81b45603ce9b368bdc304

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f8620c17cb9d81bdb2d903ce4e21c0cbab72d647de497cbc0770c26dd1290d01
MD5 459bb5cffd91a4548afcd9a39de96b32
BLAKE2b-256 bd0d2b1788bfed778c455728be22ff7bcfcca459be7d14c3b73c37b7c8ed7f78

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d77b3b03f9345760b8a21461005e3ecce4fd52b541c0d13c902ce1e477a8026b
MD5 6b272ef012ac0e06f3efb43499c48762
BLAKE2b-256 05e200e26d59158a5b6427d915f947eaecab72258c66bf18599c0953726df6fc

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 829dc5cc9c497b547f0322b5dc3090808585ab0e48efec42e4f690e55d23b64b
MD5 852ded44a66a8c72331ccff00c6f9625
BLAKE2b-256 df05fd32091c7d1673449dc1e75bab3185e8c583d5875a2c72d3fd7fd902a5e4

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: kaldialign-0.8.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for kaldialign-0.8.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d9d13720b087180853e7920aeb483f8c1750233cd45a80469c4abd150e6e3d4d
MD5 403a31a3051cd09723f64c57c6d3019f
BLAKE2b-256 1082534c98e087e596f1cfc8be96c14fcd0c50ac4e4d01655804e11e09083fc5

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 224f75138d1b6c7ab195aad4b00a65f5fb071d7fc33b99ab22692ad62a3e9625
MD5 e1ffb6389763587d2e5587cfc64b03ce
BLAKE2b-256 d804b976d1bd5f68e3efbb7a64916dee7d1f805352426623c720a5307a582b40

See more details on using hashes here.

File details

Details for the file kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kaldialign-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e7f88f3e26c8be1f6d0d14663c78eb26f115f7d45a453bfc842e08ff9bb54cb
MD5 d2ae544ab17040d8023e7b9093d85d1a
BLAKE2b-256 f537ad657572d10ab312bd5dc5d31275298b11ba23cf2edd515979664c96d421

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page