Skip to main content

A functional api for scientific data

Project description

Kamodo

codecov

Kamodo is a CCMC tool for access, interpolation, and visualization of space weather models and data in python. Kamodo allows model developers to represent simulation results as mathematical functions which may be manipulated directly by end users. Kamodo handles unit conversion transparently and supports interactive science discovery through jupyter notebooks with minimal coding and is accessible through python.

The project page is located at the Community Coordinated Modeling Center, located at NASA Goddard Space Flight Center.

Kamodo's official source code is hosted on github under a permissive NASA open source license:

Periodic contributions to Kamodo are made from the unofficial repo located here

Usage

Suppose we have a vector field defined by a function of positions in the x-y plane:

from kamodo import kamodofy
import numpy as np

x = np.linspace(-np.pi, np.pi, 25)
y = np.linspace(-np.pi, np.pi, 30)
xx, yy = np.meshgrid(x,y)
points = np.array(zip(xx.ravel(), yy.ravel()))

@kamodofy(units = 'km/s')
def fvec(rvec = points):
    ux = np.sin(rvec[:,0])
    uy = np.cos(rvec[:,1])
    return np.vstack((ux,uy)).T

The @kamodofy decorator lets us register this field with units to enable unit-conversion downstream:

from kamodo import Kamodo

kamodo = Kamodo(fvec = fvec)
kamodo

When run in a jupyter notebook, the above kamodo object will render as a set of equations:

$$\vec{f}{\left (\vec{r} \right )} [km/s] = \lambda{\left (\vec{r} \right )}$$

We can now evaluate our function using dot notation:

kamodo.fvec(np.array([[-1,1]]))
array([[-0.84147098,  0.54030231]])

We can perform unit conversion by function composition:

kamodo['gvec[m/s]'] = 'fvec'

kamodo automatically generates the appropriate multiplicative factors: $$\vec{g}{\left (\vec{r} \right )} [m/s] = 1000 \vec{f}{\left (\vec{r} \right )}$$ we can verify these results through evaluation

kamodo.gvec(np.array([[-1,1]]))
array([[-841.47098481,  540.30230587]])

Kamodo also generates quick-look graphics via function inspection.

import plotly.io as pio

fig = kamodo.plot('fvec')
pio.write_image(fig, 'images/fig2d-usage.svg')

usage

Head over to the Introduction page for more details.

Getting started

Kamodo may be installed from pip

pip install kamodo

To get the latest version, install from Asher's fork:

pip install git+https://github.com/asherp/Kamodo.git

!!! note Asher's fork is periodically merged into the CCMC's official NASA version.

Kamodo Environment

We strongly recommend using the conda environment system to avoid library conflicts with your host machine's python.

Download and install miniconda from here. The advantage to using miniconda is that each new environment includes the bare-minimum for a project. This allows you to keep many different projects on a single work station.

Create Kamodo environment

Create a new environment for kamodo

conda create -n kamodo python==3.7
conda activate kamodo
(kamodo) pip install kamodo

!!! note The leading (kamodo) in your prompt indicates that you have activated the kamodo environment. From here on, anything you install will be isolated to the kamodo environment.

Loading example notebooks

If you want to run any of the notebooks in docs, you will need to install jupyter:

(kamodo) conda install jupyter

Navigate to the top-level of the kamodo repo, then point jupyter to docs/notebooks:

(kamodo) jupyter notebook docs/notebooks

This should open a browser window that will allow you to load any of the example notebooks.

Requirements

The following requirements are obtained by running pip install kamodo

  • numpy
  • scipy
  • sympy
  • pandas
  • plotly==3.3
  • pytest
  • psutil
  • conda install antlr-python-runtime (rendering latex)
  • conda install -c plotly plotly-orca (for writing images)

!!! note plotly version in flux

Generating Docs

Kamodo's documentation site is a good example of how to embed your own plots in your own website. The documentation site is generated by the mkdocs package with some addons

  • mkdocs - handles site generation and deployment (configured by top-level mkdocs.yaml)
  • markdown-include - allows for embedding of markdown files (and graph divs) outside the docs folder
  • python-markdown-math - enables LaTeX rendering
  • mknotebooks - allows for the embedding of jupyter notebooks

All of the above requirements can be installed with this line:

pip install mkdocs python-markdown-math markdown-include mknotebooks

You can then generate the docs and serve locally with

mkdocs serve

To deploy your own documentation on github-pages:

mkdocs gh-deploy

This generates a gh-pages branch with the static site files and pushes it to github. Github automatically creates a website url based on that branch.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kamodo_core-1.0.11.tar.gz (80.0 kB view details)

Uploaded Source

Built Distribution

kamodo_core-1.0.11-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file kamodo_core-1.0.11.tar.gz.

File metadata

  • Download URL: kamodo_core-1.0.11.tar.gz
  • Upload date:
  • Size: 80.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for kamodo_core-1.0.11.tar.gz
Algorithm Hash digest
SHA256 79245a5976f48af7b5f894bd6e2b551f00a2a47d93427d4fda2e3e81bca9d150
MD5 8a6ff7651a327b6c607ec0ed614294e3
BLAKE2b-256 2d7969795da7a07da2be0992e595a5fcf9ed88c97eafcd81fcec9cd17eda26f5

See more details on using hashes here.

File details

Details for the file kamodo_core-1.0.11-py3-none-any.whl.

File metadata

  • Download URL: kamodo_core-1.0.11-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for kamodo_core-1.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 0ec92b9b87545d2cd053c517bef0324881ba4b3b20aa2e8053e520c4d25cfeb7
MD5 df9559e13a51228071406a1d817618c3
BLAKE2b-256 c98c7e563ea0ca6285efba0b6c64d4cf1ade7f8ad51db86357dacd7c6446e10d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page