Skip to main content

A Python package for phase unwrapping

Project description

Kamui

Lint Upload Python Package PyPI version

Kamui is a python package for robust and accurate phase unwrapping on 2-D, 3-D, or sparse data.

Kamui unwrap the phases by viewing the data points as vertices $V$ connected with edges $E$ and solving the following integer linear programming (ILP) problem:

\min_{k} w^T |k|,
\text{s.t.} Ak = -A\frac{x}{2\pi},

where $k_{i \in [0, M)} \in \mathbb{Z}$ is the edge ambiguities to be computed, $w_{i \in [0, M)} \in \mathbb{R}^+$ is the weights, $x_{i \in [0, M)} = (V_v - V_u + \pi) \pmod {2\pi} - \pi | (u, v) = E_i$ is the pseudo phase derivatives, $M = |E|$. $A_{ij} \in \{-1, 0, 1\} | i \in [0, N) \cap j \in [0, M)$ and $N$ is the number of elementary cycles enclosed by $E$.

This formulation is based on the fact that the true phase differences, $2\pi k + x$, should fulfill the irrotationality constraint, which means the summation of phase derivatives of each elementary cycles is zero. This is the general form of the network programming approach proposed in the paper "A novel phase unwrapping method based on network programming".

Unwrapping phase with Kamui can be computationally heavy due to the fact that ILP is NP-hard. Acceleration techniques, such as dividing the graph into subgraphs, will be implemented in the future.

Installation

pip install kamui

Kamui also provides PUMA, a fast and robust phase unwrapping algorithm based on graph cuts as an alternative. To install PUMA, run

pip install kamui[extra]

However, it uses the original maxflow implementation by Vladimir Kolmogorov with GPL license. Please follow the licensing instruction in PyMaxflow if you use this version of Kamui.

Usage

For regular 2-D or 3-D data such as interferograms, use kamui.unwrap_dimensional:

import numpy as np

def unwrap_dimensional(
    x: np.ndarray,
    start_pixel: Optional[Union[Tuple[int, int], Tuple[int, int, int]]] = None,
    use_edgelist: bool = False,
    **kwargs
) -> np.ndarray:
    """
    Unwrap the phase of a 2-D or 3-D array.

    Parameters
    ----------
    x : 2-D or 3-D np.ndarray
        The phase to be unwrapped.
    start_pixel : (2,) or (3,) tuple
        the reference pixel to start unwrapping.
        Default to (0, 0) for 2-D data and (0, 0, 0) for 3-D data.
    use_edgelist : bool
        Whether to use the edgelist method.
        Default to False.
    kwargs : dict
        Other arguments passed to `kamui.unwrap_arbitrary`.

    Returns
    -------
    np.ndarray
        The unwrapped phase of the same shape as x.
    """

For sparse data, use kamui.unwrap_arbitrary:

import numpy as np

def unwrap_arbitrary(
    psi: np.ndarray,
    edges: np.ndarray,
    simplices: Iterable[Iterable[int]] = None,
    method: str = "ilp",
    period: float = 2 * np.pi,
    start_i: int = 0,
    **kwargs,
) -> np.ndarray:
    """
    Unwrap the phase of arbitrary data.

    Parameters
    ----------
    psi : 1D np.ndarray of shape (P,)
        The phase (vertices) to be unwrapped.
    edges : 2-D np.ndarray of shape (M, 2)
        The edges of the graph.
    simplices : Iterable[Iterable[int]] of length (N,)
        Each element is a list of vertices that form a simplex (a.k.a elementary cycle).
        The connections should be consistent with the edges.
        This is also used to compute automatic weights for each edge.
        If not provided and method is "ilp", an edgelist-based ILP solver will be used without weighting.
    method : str
        The method to be used. Valid options are "ilp" and "gc", where "gc" correponds to PUMA.
        Default to "ilp".
    period : float
        The period of the phase.
        Default to 2 * np.pi.
    start_i : int
        The index of the reference vertex to start unwrapping.
        Default to 0.
    kwargs : dict
        Other arguments passed to the solver.

    Returns
    -------
    np.ndarray
        The unwrapped phase of the same shape as psi.
    """

Examples

TODO

  • subgraph division
  • edges-based custom weighting
  • vertices-based custom weighting

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kamui-0.1.2.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

kamui-0.1.2-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file kamui-0.1.2.tar.gz.

File metadata

  • Download URL: kamui-0.1.2.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for kamui-0.1.2.tar.gz
Algorithm Hash digest
SHA256 1f56c7d6e0fff85c1a77dc8a09256c32b94a2ee1485b089396148c9def6aa4ee
MD5 81fdd47584e4822a2881d2d2188c6e67
BLAKE2b-256 f7586f06c0ee175ad0547684d2016c6cf01aa91745dd2c8a9833ca6f8374c222

See more details on using hashes here.

File details

Details for the file kamui-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: kamui-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for kamui-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 108b56912eba44dfa1d925257bb937218847b339c822d2e56753d44789b0fa21
MD5 81ae16427ccbd10a75f3971f5ce50358
BLAKE2b-256 68a4c41ba07800c5030f70ffc3a9d7c6d64976e4294fcbf82052704e1d014e09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page