Skip to main content

Helpful functions for Computer Vision tasks

Project description

🦌 Kano - Tools for Computer Vision Tasks

Kano is a Python package providing utility functions for Computer Vision tasks. Its primary focus is simplifying lengthy functions, allowing developers to concentrate more on the main processes.

📥 Installation

The latest released version is available on PyPI. You can install it by running the following command in your terminal:

pip install kano-cv

🚀 Usage

🗃️ YOLO Datasets Splitting/Merging

Test these utilities here: Open in Colab

If you are using Roboflow to label and struggling to merge many Workspaces or YOLO format projects, Kano provides a utility to merge them with just one command:

from kano.complex.roboflow import merge_datasets


# Each dataset folder contains two folders "images" and "labels"
folders = [
    "Dataset_1",
    "Dataset_2",
]

merge_datasets(folders, merged_folder_path="dataset")

You can also split a dataset into train/valid/test with your own split ratio with only one command:

from kano.complex.roboflow import split_dataset


# Split a dataset (contains "images" and "labels")
# into train, valid, test folders with a given ratio
split_dataset(
    dataset_path="dataset/train",
    train_percent=80,
    valid_percent=20,
    target_folder="splitted_dataset",
)

📁 Files/Folders Manipulating

Test these utilities here: Open in Colab

Kano is designed to run many common functions in just one line:

from kano.file_utils import create_folder, print_foldertree, remove_folder

# Create a folder and its subfolder without errors
create_folder("folder_A/subfolder")

for i in range(2):
    with open(f"folder_A/subfolder/file_{i}.txt", "w") as f:
        pass

print_foldertree("folder_A")
# folder_A (2 files)
# |-- subfolder (2 files)

# Remove a folder with its content without errors
remove_folder("folder_A/subfolder")

You can even zip many folders by providing their paths and the destination path in a function call:

zip_folders(["folder_A", "folder_B"], "zipfile.zip")

🖼️ Images Processing

Test these utilities here: Open in Colab

You can quickly download an image using a URL and show it in IPython notebooks or Python files:

from kano.image_utils import download_image, show_image


image = download_image("https://avatars.githubusercontent.com/u/77763935?v=4", "image.jpg")

# using a numpy array
show_image(image)

# using a file path
show_image("image.jpg")

or you can get a random image with a specific size:

from kano.image_utils import get_random_picture


image = get_random_picture(width=400, height=300, save_path="random_image.jpg")

# using a numpy array
show_image(image)

# using a file path
show_image("random_image.jpg")

🎞️ Videos Processing

Test these utilities here: Open in Colab

Kano helps you extract images from a video. For demo purposes, I will download a video from YouTube using pytube. If you find this function helpful, please give a star to the original repo.

from kano.video_utils import download_youtube_video, extract_frames


download_youtube_video("https://www.youtube.com/watch?v=<VIDEOID>", "video.mp4")

# Get 1 image per 2 seconds
extract_frames(
    video_path="video.mp4", 
    target_folder="frames", 
    seconds_interval=2,
)

🙋‍♂️ Contributing to Kano

All contributions, bug reports, bug fixes, enhancements, and ideas are welcome. Feel free to create pull requests or issues so that we can improve this library together.

🔑 License

Kano is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kano-cv-1.5.2.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

kano_cv-1.5.2-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file kano-cv-1.5.2.tar.gz.

File metadata

  • Download URL: kano-cv-1.5.2.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for kano-cv-1.5.2.tar.gz
Algorithm Hash digest
SHA256 af100f143ab7a79da715c812bad5f207eb21923911fe4cafc497010739b3ba65
MD5 3ecedd940f0c3c6605004d832f9633f4
BLAKE2b-256 7cf516aa72e8771ab5d200c52fd34bd37cbffdfc9758ab1aa44dec120dc757f7

See more details on using hashes here.

File details

Details for the file kano_cv-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: kano_cv-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for kano_cv-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8170fd86503efff1be649a90c03dda2ebf60fa4be6313ea02b5bc4479ec63ea6
MD5 5c8184033c834a15c4dc81ab9e89ad3e
BLAKE2b-256 9f29b1565ad22df38cd7ac451336539045fcff302c742ca743a04c533c2927f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page