Skip to main content

Library for fetching coin/token historical data, trends and more.

Project description

https://raw.githubusercontent.com/im-n1/karpet/master/assets/logo.png
PyPI PyPI - License PyPI - Downloads

Description

Karpet is a tiny library with just a few dependencies for fetching coins/tokens metrics data from the internet.

It can provide following data:

  • coin/token historical price data (no limits)

  • google trends for the given list of keywords (longer period than official API)

  • twitter scraping for the given keywords (no limits)

  • much more info about crypto coins/tokens (no rate limits)

What is upcoming?

  • Reddit metrics

  • Have a request? Open an issue ;)

Extras

Library uses a few nifty dependencies and is Python 3.6+ only. There is no need to install dependencies you don’t need. Therefore this library utilizes extras which install optional dependencies:

  • for Google trends - google

Usage

  1. Install the library via pip.

pip install karpet  # Basics only
pip install karpet[google]  # With Google trends
  1. Import the library class first.

from karpet import Karpet

fetch_crypto_historical_data()

Retrieves historical data.

k = Karpet(date(2019, 1, 1), date(2019, 5, 1))
df = k.fetch_crypto_historical_data(id="ethereum")  # Dataframe with historical data.
df.head()

                 price   market_cap total_volume
2019-01-01  131.458725  1.36773e+10  1.36773e+10
2019-01-02  138.144802  1.43923e+10  1.43923e+10
2019-01-03  152.860453  1.59222e+10  1.59222e+10
2019-01-04  146.730599  1.52777e+10  1.52777e+10
2019-01-05  153.056567  1.59408e+10  1.59408e+10

fetch_crypto_exchanges()

Retrieves exchange list.

k = Karpet()
k.fetch_crypto_exchanges("nrg")
['DigiFinex', 'KuCoin', 'CryptoBridge', 'Bitbns', 'CoinExchange']

fetch_news()

Retrieves crypto news.

k = Karpet()
news = k.fetch_news("btc")  # Gets 10 news.
print(news[0])
{
   'url': 'https://cointelegraph.com/ ....',  # Truncated.
   'title': 'Shell Invests in Blockchain-Based Energy Startup',
   'description': 'The world’s fifth top oil and gas firm, Shell, has...',  # Truncated.
   'date': datetime.datetime(2019, 7, 28, 9, 24, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600)))
   'image': 'https://images.cointelegraph.com/....jpg'  # Truncated.
}
news = k.fetch_news("btc", limit=30)  # Gets 30 news.

fetch_top_news()

Retrieves top crypto news in 2 categories:

  • Editor’s choices - articles picked by editors

  • Hot stories - articles with most views

k = Karpet()
editors_choices, top_stories = k.fetch_top_news()
print(len(editors_choices))
5
print(len(top_stories))
5
print(editors_choices[0])
{
   'url': 'https://cointelegraph.com/...',  # Truncated.
   'title': 'Bank of China’s New Infographic Shows Why Bitcoin Price Is Going Up',
   'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
   'image': 'https://images.cointelegraph.com/images/740_aHR...', # Truncated.
   'description': 'The Chinese central bank released on its website an ...'  # Truncated.
}
print(top_stories[0])
{
   'url': 'https://cointelegraph.com/...',  # Truncated.
   'title': 'Bitcoin Price Shuns Volatility as Analysts Warn of Potential Drop to $7,000',
   'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
   'image': 'https://images.cointelegraph.com/images/740_aHR0c...'  # Truncated.
   'description': 'Stability around $10,600 for Bitcoin price is ...'  # Truncated.
}

get_coin_ids()

Resolves coin ID’s based on the given symbol (there are coins out there with identical symbol).

Use this to get distinctive coin ID which can be used as id param for method fetch_crypto_historical_data().

k = Karpet()
print(k.get_coin_ids("sta"))
['statera']

get_basic_data()

Fetches coin/token basic data like:

open_issues is only provided if total_issues and closed_issues are available.

k = Karpet()
print(k.get_basic_data(id="ethereum"))
{
    'closed_issues': 5530,
    'commit_count_4_weeks': 40,
    'current_price': 3167.67,
    'forks': 11635,
    'market_cap': 371964284548,
    'name': 'Ethereum',
    'open_issues': 230,
    'pull_request_contributors': 552,
    'rank': 2,
    'reddit_accounts_active_48h': 2881.0,
    'reddit_average_comments_48h': 417.083,
    'reddit_average_posts_48h': 417.083,
    'reddit_subscribers': 1057875,
    'stars': 31680,
    'total_issues': 5760,
    'year_high': 4182.790285752286,
    'year_low': 321.0774351739628,
    'yoy_change': 695.9225871929757,  # growth/drop in percents
    'price_change_24': 120.1,
    'price_change_24_percents': 1.23
}

get_quick_search_data()

Lists all coins/tokes with some basic info.

k = Karpet()
print(k.get_quick_search_data()[0])
{
    "name": "Bitcoin",
    "symbol": "BTC",
    "rank": 1,
    "slug": "bitcoin",
    "tokens": [
        "Bitcoin",
        "bitcoin",
        "BTC"
    ],
    "id": 1,
}

fetch_crypto_live_data()

Retrieves live market data.

k = Karpet()
df = k.fetch_crypto_live_data(id="ethereum")  # Dataframe with live data.
df.head()

                        open     high      low    close
2023-01-16 20:00:00  1593.01  1595.05  1593.01  1594.28
2023-01-16 20:30:00  1593.37  1593.37  1589.03  1589.35
2023-01-16 21:00:00  1592.68  1593.66  1584.71  1587.87
2023-01-16 21:30:00  1587.28  1587.28  1583.13  1583.13
2023-01-16 22:00:00  1573.99  1580.11  1573.99  1579.97

Changelog

here

Credits

This is my personal library I use in my long-term project. I can pretty much guarantee it will live for a long time then. I will add new features over time and I more than welcome any help or bug reports. Feel free to open an issue or merge request.

The code is is licensed under MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

karpet-0.5.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

karpet-0.5-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file karpet-0.5.tar.gz.

File metadata

  • Download URL: karpet-0.5.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Linux/6.3.0-1-amd64

File hashes

Hashes for karpet-0.5.tar.gz
Algorithm Hash digest
SHA256 97da5147bb0f436d2b0d8cf50c77878c342fef9a608e0f9a028d20f09710a76c
MD5 fa37c6b1038d971e093e03ce0036b2d9
BLAKE2b-256 8cba0ee16d836f2a8793a8c688559f5be068408b8c466d629f7b1b6afc461e59

See more details on using hashes here.

File details

Details for the file karpet-0.5-py3-none-any.whl.

File metadata

  • Download URL: karpet-0.5-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Linux/6.3.0-1-amd64

File hashes

Hashes for karpet-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 a431d539b8019652afa67598d9bf032f511c685feb780332d9bb162d908e2aa3
MD5 c0a49097a478f98aab2b53faaf0e282e
BLAKE2b-256 4d4cca17733b95db21e878327fb467adfffd920a4b7926956d32c447aeea97a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page