Skip to main content

Library for fetching coin/token historical data, trends and more.

Project description

https://raw.githubusercontent.com/im-n1/karpet/master/assets/logo.png
PyPI PyPI - License PyPI - Downloads

Description

Karpet is a tiny library with just a few dependencies for fetching coins/tokens metrics data from the internet.

It can provide following data:

  • coin/token historical price data (no limits)

  • google trends for the given list of keywords (longer period than official API)

  • twitter scraping for the given keywords (no limits)

  • much more info about crypto coins/tokens (no rate limits)

What is upcoming?

  • Reddit metrics

  • Have a request? Open an issue ;)

Extras

Library uses a few nifty dependencies and is Python 3.6+ only. There is no need to install dependencies you don’t need. Therefore this library utilizes extras which install optional dependencies:

  • for Google trends - google

Usage

  1. Install the library via pip.

pip install karpet  # Basics only
pip install karpet[google]  # With Google trends
  1. Import the library class first.

from karpet import Karpet

fetch_crypto_historical_data()

Retrieves historical data.

k = Karpet(date(2019, 1, 1), date(2019, 5, 1))
df = k.fetch_crypto_historical_data(id="ethereum")  # Dataframe with historical data.
df.head()

                 price   market_cap total_volume
2019-01-01  131.458725  1.36773e+10  1.36773e+10
2019-01-02  138.144802  1.43923e+10  1.43923e+10
2019-01-03  152.860453  1.59222e+10  1.59222e+10
2019-01-04  146.730599  1.52777e+10  1.52777e+10
2019-01-05  153.056567  1.59408e+10  1.59408e+10

fetch_crypto_exchanges()

Retrieves exchange list.

k = Karpet()
k.fetch_crypto_exchanges("nrg")
['DigiFinex', 'KuCoin', 'CryptoBridge', 'Bitbns', 'CoinExchange']

And with a few lines of code you can get a chart

df = df.set_index("date")
df.plot()
https://raw.githubusercontent.com/im-n1/karpet/master/assets/trends_chart.png

fetch_news()

Retrieves crypto news.

k = Karpet()
news = k.fetch_news("btc")  # Gets 10 news.
print(news[0])
{
   'url': 'https://cointelegraph.com/ ....',  # Truncated.
   'title': 'Shell Invests in Blockchain-Based Energy Startup',
   'description': 'The world’s fifth top oil and gas firm, Shell, has...',  # Truncated.
   'date': datetime.datetime(2019, 7, 28, 9, 24, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600)))
   'image': 'https://images.cointelegraph.com/....jpg'  # Truncated.
}
news = k.fetch_news("btc", limit=30)  # Gets 30 news.

fetch_top_news()

Retrieves top crypto news in 2 categories:

  • Editor’s choices - articles picked by editors

  • Hot stories - articles with most views

k = Karpet()
editors_choices, top_stories = k.fetch_top_news()
print(len(editors_choices))
5
print(len(top_stories))
5
print(editors_choices[0])
{
   'url': 'https://cointelegraph.com/...',  # Truncated.
   'title': 'Bank of China’s New Infographic Shows Why Bitcoin Price Is Going Up',
   'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
   'image': 'https://images.cointelegraph.com/images/740_aHR...', # Truncated.
   'description': 'The Chinese central bank released on its website an ...'  # Truncated.
}
print(top_stories[0])
{
   'url': 'https://cointelegraph.com/...',  # Truncated.
   'title': 'Bitcoin Price Shuns Volatility as Analysts Warn of Potential Drop to $7,000',
   'date': datetime.datetime(2019, 7, 27, 10, 7, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
   'image': 'https://images.cointelegraph.com/images/740_aHR0c...'  # Truncated.
   'description': 'Stability around $10,600 for Bitcoin price is ...'  # Truncated.
}

get_coin_ids()

Resolves coin ID’s based on the given symbol (there are coins out there with identical symbol).

Use this to get distinctive coin ID which can be used as id param for method fetch_crypto_historical_data().

k = Karpet()
print(k.get_coin_ids("sta"))
['statera']

get_basic_data()

Fetches coin/token basic data like:

open_issues is only provided if total_issues and closed_issues are available.

k = Karpet()
print(k.get_basic_data(id="ethereum"))
{
    'closed_issues': 5530,
    'commit_count_4_weeks': 40,
    'current_price': 3167.67,
    'forks': 11635,
    'market_cap': 371964284548,
    'name': 'Ethereum',
    'open_issues': 230,
    'pull_request_contributors': 552,
    'rank': 2,
    'reddit_accounts_active_48h': 2881.0,
    'reddit_average_comments_48h': 417.083,
    'reddit_average_posts_48h': 417.083,
    'reddit_subscribers': 1057875,
    'stars': 31680,
    'total_issues': 5760,
    'year_high': 4182.790285752286,
    'year_low': 321.0774351739628,
    'yoy_change': 695.9225871929757,  # growth/drop in percents
    'price_change_24': 120.1,
    'price_change_24_percents': 1.23
}

get_quick_search_data()

Lists all coins/tokes with some basic info.

k = Karpet()
print(k.get_quick_search_data()[0])
{
    "name": "Bitcoin",
    "symbol": "BTC",
    "rank": 1,
    "slug": "bitcoin",
    "tokens": [
        "Bitcoin",
        "bitcoin",
        "BTC"
    ],
    "id": 1,
}

fetch_crypto_live_data()

Retrieves live market data.

k = Karpet()
df = k.fetch_crypto_live_data(id="ethereum")  # Dataframe with live data.
df.head()

                        open     high      low    close
2023-01-16 20:00:00  1593.01  1595.05  1593.01  1594.28
2023-01-16 20:30:00  1593.37  1593.37  1589.03  1589.35
2023-01-16 21:00:00  1592.68  1593.66  1584.71  1587.87
2023-01-16 21:30:00  1587.28  1587.28  1583.13  1583.13
2023-01-16 22:00:00  1573.99  1580.11  1573.99  1579.97

Changelog

here

Credits

This is my personal library I use in my long-term project. I can pretty much guarantee it will live for a long time then. I will add new features over time and I more than welcome any help or bug reports. Feel free to open an issue or merge request.

The code is is licensed under MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

karpet-0.5.2.tar.gz (12.6 kB view details)

Uploaded Source

Built Distribution

karpet-0.5.2-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file karpet-0.5.2.tar.gz.

File metadata

  • Download URL: karpet-0.5.2.tar.gz
  • Upload date:
  • Size: 12.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.7.12

File hashes

Hashes for karpet-0.5.2.tar.gz
Algorithm Hash digest
SHA256 f4bbccee655cc30c900ae928d5b7802ea608d47651dcf53a135fe271b6bac8f0
MD5 79ceaf03b58e48aef40522a5d839f406
BLAKE2b-256 d6b29c2f75f3360e68ea2926a7191ead7566af5b70c1fc8ce3083ec0b0ab484e

See more details on using hashes here.

File details

Details for the file karpet-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: karpet-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.7.12

File hashes

Hashes for karpet-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d1ece1d902f23285c0b231d2ccc76084aa63aea7bfa93bd64f3477de38d63fc5
MD5 b0ce1b6407fb7643159fa91dbca24068
BLAKE2b-256 43139e1ac950467e62e4478905ceae6f009b3fbed20f7f36d275bd2fa2a6b17f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page