Skip to main content

package for computer vision tools wrap

Project description

KARUOCV

package for computer vision tools wrap

command usage:

usage: karuocv [-h] --task TASK [--base_model BASE_MODEL] [--device DEVICE] [--epochs EPOCHS] [--iterations ITERATIONS] [--batch_size BATCH_SIZE] [--path PATH] [--verbose] [--format FORMAT] [--source_a SOURCE_A] [--source_b SOURCE_B] [--dest DEST]

SACP object train tools

options: -h, --help show this help message and exit
--task TASK 指定任务 train, inference, mix_datasets, ETC
--base_model BASE_MODEL 底座模型的路径
--device DEVICE select one in the list which contains cpu, cuda and mps
--epochs EPOCHS 训练迭代周期
--iterations ITERATIONS The number of generations to run the evolution for.
--batch_size BATCH_SIZE the batch size of train.
--path PATH some path parameter.
--verbose show log for inference or not
--format FORMAT format parameter
--source_a SOURCE_A
--source_b SOURCE_B
--dest DEST the output files destnation path.
--imshow 是否通过cv2显示图片

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

karuocv-0.61.tar.gz (15.3 kB view details)

Uploaded Source

File details

Details for the file karuocv-0.61.tar.gz.

File metadata

  • Download URL: karuocv-0.61.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for karuocv-0.61.tar.gz
Algorithm Hash digest
SHA256 ef057faf5a74c69091813c50c4ff5db7d6b31f2309bd8a6055fd13a9bb400ce3
MD5 5a881547361501c809adcde3995c5880
BLAKE2b-256 5b000c17838a5da9caf18e2a33a04800af19cf22b070cfebc64061fc434fdd4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page