Skip to main content

Simple, Keras-powered multilingual NLP framework, allows you to build your models in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS) and text classification tasks. Includes BERT, GPT-2 and word2vec embedding.

Project description

Kashgari

GitHub Slack Coverage Status PyPI

Overview | Performance | Installation | Documentation | Contributing

🎉🎉🎉 We released the 2.0.0 version with TF2 Support. 🎉🎉🎉

If you use this project for your research, please cite:

@misc{Kashgari
  author = {Eliyar Eziz},
  title = {Kashgari},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/BrikerMan/Kashgari}}
}

Overview

Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.

  • Human-friendly. Kashgari's code is straightforward, well documented and tested, which makes it very easy to understand and modify.
  • Powerful and simple. Kashgari allows you to apply state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS) and classification.
  • Built-in transfer learning. Kashgari built-in pre-trained BERT and Word2vec embedding models, which makes it very simple to transfer learning to train your model.
  • Fully scalable. Kashgari provides a simple, fast, and scalable environment for fast experimentation, train your models and experiment with new approaches using different embeddings and model structure.
  • Production Ready. Kashgari could export model with SavedModel format for tensorflow serving, you could directly deploy it on the cloud.

Our Goal

  • Academic users Easier experimentation to prove their hypothesis without coding from scratch.
  • NLP beginners Learn how to build an NLP project with production level code quality.
  • NLP developers Build a production level classification/labeling model within minutes.

Performance

Welcome to add performance report.

Task Language Dataset Score
Named Entity Recognition Chinese People's Daily Ner Corpus 95.57
Text Classification Chinese SMP2018ECDTCorpus 94.57

Installation

The project is based on Python 3.6+, because it is 2019 and type hinting is cool.

Backend kashgari version desc
TensorFlow 2.2+ pip install 'kashgari>=2.0.2' TF2.10+ with tf.keras
TensorFlow 1.14+ pip install 'kashgari>=1.0.0,<2.0.0' TF1.14+ with tf.keras
Keras pip install 'kashgari<1.0.0' keras version

You also need to install tensorflow_addons with TensorFlow.

TensorFlow Version tensorflow_addons version
TensorFlow 2.1 pip install tensorflow_addons==0.9.1
TensorFlow 2.2 pip install tensorflow_addons==0.11.2
TensorFlow 2.3, 2.4, 2.5 pip install tensorflow_addons==0.13.0

Tutorials

Here is a set of quick tutorials to get you started with the library:

There are also articles and posts that illustrate how to use Kashgari:

Examples:

Contributors ✨

Thanks goes to these wonderful people. And there are many ways to get involved. Start with the contributor guidelines and then check these open issues for specific tasks.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kashgari-2.0.2.tar.gz (53.8 kB view details)

Uploaded Source

Built Distribution

kashgari-2.0.2-py3-none-any.whl (89.3 kB view details)

Uploaded Python 3

File details

Details for the file kashgari-2.0.2.tar.gz.

File metadata

  • Download URL: kashgari-2.0.2.tar.gz
  • Upload date:
  • Size: 53.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for kashgari-2.0.2.tar.gz
Algorithm Hash digest
SHA256 d67bc6852b63d8fe6722c25d77107042874b83b35c1c8adbf34196effa2ebc1d
MD5 45090f7d0119a87c5783a14c068be176
BLAKE2b-256 93af7aff2d842f86527e293fe0671a2cb06a68109740d36275a86e8f8b845476

See more details on using hashes here.

File details

Details for the file kashgari-2.0.2-py3-none-any.whl.

File metadata

  • Download URL: kashgari-2.0.2-py3-none-any.whl
  • Upload date:
  • Size: 89.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for kashgari-2.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 528999057f3d1d02490643e446a6a4982cd0046171ce6122921a23e58aa381b0
MD5 480fba36c21653a4a88c90bacb0b6adf
BLAKE2b-256 a06ee123cf5a883dabbec608192bdf52a3d4ba6e0796de5cf47b5fd57cc0e49c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page