Skip to main content

Create VMs on ProxmoxVE and Vmware and install HPE Ezmeral

Project description

Kayalab python module

CLI utility to create virtual machines and install HPE Ezmeral products.

Usage

It supports install/delete operations for Virtual Machines on Proxmox VE and Vmware vSphere.

Prepare

Download base cloud images for template creation.

Tested images can be found at: Rocky8: https://download.rockylinux.org/pub/rocky/8/images/x86_64/Rocky-8-GenericCloud.latest.x86_64.qcow2

RHEL8 (login required): https://access.cdn.redhat.com/content/origin/files/sha256/5f/5f9cd94d9a9a44ac448b434f3e28d24465deef089bbd452392b3f10e96cb8eaa/rhel-8.8-x86_64-kvm.qcow2

Vmware

Convert qcow2 image to vmdk

qemu-img convert -f qcow2 -O vmdk -o subformat=streamOptimized Rocky-8-GenericCloud.latest.x86_64.qcow2 Rocky-8-GenericCloud.latest.x86_64.vmdk

(Enable and) SSH into the esx host (change your host name) ssh root@<esx.host>

Copy vmdk to a datastore (change your host name and datastore path) scp Rocky-8-GenericCloud.latest.x86_64.vmdk root@<esx.host>:/vmfs/volumes/<datastore>

Convert image to disk vmkfstools -i Rocky-8-GenericCloud.latest.x86_64.vmdk rocky-template.vmdk -W file -d thin -N

Proxmox

Copy qcow2 base image file(s) into /var/lib/vz/template/qemu folder (create the qemu folder first)

Configure Utility

python3 main.py config set

To enable proxy (no_proxy will be generated and added to environment automatically):

proxy = http://proxy.company.com:80

To use local yum/dnf repository:

Using Nexus OSS, you can add a yum-proxy repository with this: Remote Storage: https://download.rockylinux.org/pub/rocky/

yum_proxy = http://10.1.1.10:8081/repository/yum-proxy

To use local mapr repository:

Using Nexus OSS, you can add a yum-proxy repository with this: Remote Storage: https://package.ezmeral.hpe.com/releases/ Authentication: Checked Authentication Type: Username Username: <HPE passport email> Password: <Repository Token>

mapr_proxy = http://10.1.1.10:8081/repository/mapr-proxy

Copy UA airgap files (optional):

ezua-airgap-util --release v1.2.0 --copy --dest_url http://<local-registry>:5000/ --dest_creds user:pass

Create template VM

python3 main.py create template -t pve|vmw --host <host>

Create VMs

python3 main.py create vm -t pve|vmw --host <host>

Ezmeral Data Fabric

Install Ezmeral Data Fabric

Version 7.5 with EEP 9.2.0 will be installed on as many hosts provided. Installer will be installed on the first node and system will automatically distribute services across other nodes. Single node installation is also possible. Core components (fileserver, DB, Kafka/Streams, s3server, Drill, HBase, Hive) and monitoring tools (Grafana, OpenTSDB...) will be installed.

python3 main.py install ezdf -h 10.1.1.21 -h 10.1.1.22 -h 10.1.1.23 -h 10.1.1.24 -h 10.1.1.25

Configure Ezmeral Data Fabric Client

Will download secure files from the server and install/configure the client for the cluster.

python3 main.py install dfclient --server 10.1.1.21 --client 10.1.1.30

Ezmeral Unified Analytics

You need to get UA installer docker image and then extract ezfabricctl and ezfab-release.tgz files from it.

docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfab-release.tgz .
docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfabricctl_darwin_amd64 .
docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfabricctl_linux_amd64 .

TODO: can provide direct links and process here.

Install container in first node:

Assuming vm1 and vm2 created for control-plane (4 cores & 32GB memory), and vm3, vm4, vm5 as worker nodes (32 cores & 128GB memory)

python3 main.py install ezua orch -h <vm1-ip-or-fqdn>

Add other hosts to the pool:

python3 main.py install ezua pool -w <vm2-ip-or-fqdn> -w <vm3-ip-or-fqdn> -w <vm4-ip-or-fqdn> -w <vm5-ip-or-fqdn>

Create workload cluster:

python3 main.py install ezua workload -o <vm1-ip-or-fqdn> -c ezfab-orchestrator-kubeconfig

TODO

[ ] Proper documentation and code clean up

[ ] Test on standalone ESX host

[ ] Test airgap for UA

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kayalab-0.3.0.tar.gz (31.1 kB view details)

Uploaded Source

Built Distribution

kayalab-0.3.0-py3-none-any.whl (34.7 kB view details)

Uploaded Python 3

File details

Details for the file kayalab-0.3.0.tar.gz.

File metadata

  • Download URL: kayalab-0.3.0.tar.gz
  • Upload date:
  • Size: 31.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.6.0

File hashes

Hashes for kayalab-0.3.0.tar.gz
Algorithm Hash digest
SHA256 3be6ff8dabb26248ec7e1ae243c279437dc56c3b88059f0e6c6aa88c8de08550
MD5 eb98b23b1066304dae115d0ca261aa40
BLAKE2b-256 0aeed260f1d101af690b327dea72961a8978a6794ec6c734eb77352934d8442e

See more details on using hashes here.

File details

Details for the file kayalab-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: kayalab-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 34.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.6.0

File hashes

Hashes for kayalab-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6c16f7a73668bdc7776482d292813a7ab09ba0cf03d9328e8349408a57579238
MD5 9262178a90e7a831e15b70c6c602f17e
BLAKE2b-256 0820e85209f227b585027769c5bdc62df7abf7ef14130f47b085f95ff735e7cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page