Skip to main content

Create VMs on ProxmoxVE and Vmware and install HPE Ezmeral

Project description

Kayalab python module

CLI utility to create virtual machines and install HPE Ezmeral products.

Usage

It supports install/delete operations for Virtual Machines on Proxmox VE and Vmware vSphere.

Prepare

Download base cloud images for template creation.

Tested images can be found at: Rocky8: https://download.rockylinux.org/pub/rocky/8/images/x86_64/Rocky-8-GenericCloud.latest.x86_64.qcow2

RHEL8 (login required): https://access.cdn.redhat.com/content/origin/files/sha256/5f/5f9cd94d9a9a44ac448b434f3e28d24465deef089bbd452392b3f10e96cb8eaa/rhel-8.8-x86_64-kvm.qcow2

Vmware

Convert qcow2 image to vmdk

qemu-img convert -f qcow2 -O vmdk -o subformat=streamOptimized Rocky-8-GenericCloud.latest.x86_64.qcow2 Rocky-8-GenericCloud.latest.x86_64.vmdk

(Enable and) SSH into the esx host (change your host name) ssh root@<esx.host>

Copy vmdk to a datastore (change your host name and datastore path) scp Rocky-8-GenericCloud.latest.x86_64.vmdk root@<esx.host>:/vmfs/volumes/<datastore>

Convert image to disk vmkfstools -i Rocky-8-GenericCloud.latest.x86_64.vmdk rocky-template.vmdk -W file -d thin -N

Proxmox

Copy qcow2 base image file(s) into /var/lib/vz/template/qemu folder (create the qemu folder first)

Configure Utility

kayalab config set

To enable proxy (no_proxy will be generated and added to environment automatically):

proxy = http://proxy.company.com:80

To use local yum/dnf repository:

Using Nexus OSS, you can add a yum-proxy repository with this: Remote Storage: https://download.rockylinux.org/pub/rocky/

yum_proxy = http://10.1.1.10:8081/repository/yum-proxy

To use local mapr repository:

Using Nexus OSS, you can add a yum-proxy repository with this: Remote Storage: https://package.ezmeral.hpe.com/releases/ Authentication: Checked Authentication Type: Username Username: <HPE passport email> Password: <Repository Token>

mapr_proxy = http://10.1.1.10:8081/repository/mapr-proxy

Copy UA airgap files (optional):

ezua-airgap-util --release v1.2.0 --copy --dest_url http://<local-registry>:5000/ --dest_creds user:pass

Create template VM

kayalab create template -t pve|vmw --host <host>

Create VMs

kayalab create vm -t pve|vmw --host <host>

Ezmeral Data Fabric

Install Ezmeral Data Fabric

Version 7.5 with EEP 9.2.0 will be installed on as many hosts provided. Installer will be installed on the first node and system will automatically distribute services across other nodes. Single node installation is also possible. Core components (fileserver, DB, Kafka/Streams, s3server, Drill, HBase, Hive) and monitoring tools (Grafana, OpenTSDB...) will be installed.

kayalab install ezdf -h 10.1.1.21 -h 10.1.1.22 -h 10.1.1.23 -h 10.1.1.24 -h 10.1.1.25

Configure Ezmeral Data Fabric Client

Will download secure files from the server and install/configure the client for the cluster.

kayalab install dfclient --server 10.1.1.21 --client 10.1.1.30

Ezmeral Unified Analytics

You need to get UA installer docker image and then extract ezfabricctl and ezfab-release.tgz files from it.

docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfab-release.tgz .
docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfabricctl_darwin_amd64 .
docker cp hpe-ezua-installer-ui:/root/ezua-installer-ui/ezfabricctl_linux_amd64 .

TODO: can provide direct links if/when they are publicly available.

Install container in first node:

Assuming vm1 and vm2 created for control-plane (4 cores & 32GB memory), and vm3, vm4, vm5 as worker nodes (32 cores & 128GB memory). Requirements might change with future releases (available at https://docs.ezmeral.hpe.com/)

kayalab install ezua orch -h <vm1-ip-or-fqdn>

Add other hosts to the pool:

kayalab install ezua pool -w <vm2-ip-or-fqdn> -w <vm3-ip-or-fqdn> -w <vm4-ip-or-fqdn> -w <vm5-ip-or-fqdn>

Create workload cluster:

kayalab install ezua workload -o <vm1-ip-or-fqdn> -c ezfab-orchestrator-kubeconfig

TODO

[ ] Proper documentation and code clean up

[ ] Test on standalone ESX host

[ ] Test airgap for UA

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kayalab-0.3.1.tar.gz (31.3 kB view details)

Uploaded Source

Built Distribution

kayalab-0.3.1-py3-none-any.whl (34.9 kB view details)

Uploaded Python 3

File details

Details for the file kayalab-0.3.1.tar.gz.

File metadata

  • Download URL: kayalab-0.3.1.tar.gz
  • Upload date:
  • Size: 31.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.6.0

File hashes

Hashes for kayalab-0.3.1.tar.gz
Algorithm Hash digest
SHA256 3b29ab370fd11ffd0e2619dd0bd326b1533af7924d07de7a73544460059370ef
MD5 f8ce632e8efd2963e6a07823e9269978
BLAKE2b-256 df4fadde20a4985299907672ce89a9e7caea95e42e3d13b45f7aa90a2f8e2c6a

See more details on using hashes here.

File details

Details for the file kayalab-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: kayalab-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.6.0

File hashes

Hashes for kayalab-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9da2e2664e79b4930713353a5b0b3540903c4842a225315ac28e97d43c0fc9d9
MD5 8f762615777329ea15153c9dd2d2521c
BLAKE2b-256 f01a00e00f3efb8e091c23df45a7d036ca0695984b0e67462adf3e5f3db26c28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page