TensorFlow2.0 with Keras For BERT
Project description
BAND:BERT Application aNd Deployment
A simple and efficient BERT model training and deployment framework.
BAND:BERT Application aNd Deployment
Documents »
Examples
·
Report Bug
·
Feature Request
·
Questions
What is it
Encoding/Embedding is a upstream task of encoding any inputs in the form of text, image, audio, video, transactional data to fixed length vector. Embeddings are quite popular in the field of NLP, there has been various Embeddings models being proposed in recent years by researchers, some of the famous one are bert, xlnet, word2vec etc. The goal of this repo is to build one stop solution for all embeddings techniques available, here we are starting with popular text embeddings for now and later on we aim to add as much technique for image, audio, video inputs also.
Finally, embedding-as-service
help you to encode any given text to fixed length vector from supported embeddings and models.
💾 Installation
Install the band via pip
.
$ pip install band -U
Note that the code MUST be running on Python >= 3.6. Again module does not support Python 2!
⚡ ️Getting Started
Text Classification Example
import time
import tensorflow as tf
from transformers import BertConfig, BertTokenizer
from band.model import TFBertForSequenceClassification
from band.dataset import ChnSentiCorp
from band.progress import classification_convert_examples_to_features
USE_XLA = False
USE_AMP = False
EPOCHS = 1
BATCH_SIZE = 16
EVAL_BATCH_SIZE = 16
TEST_BATCH_SIZE = 1
MAX_SEQ_LEN = 128
LEARNING_RATE = 3e-5
SAVE_MODEL = False
pretrained_dir = "/home/band/models"
tf.config.optimizer.set_jit(USE_XLA)
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP})
dataset = ChnSentiCorp(save_path="/tmp/band")
data, label = dataset.data, dataset.label
dataset.dataset_information()
train_number, eval_number, test_number = dataset.train_examples_num, dataset.eval_examples_num, dataset.test_examples_num
tokenizer = BertTokenizer.from_pretrained(pretrained_dir)
train_dataset = classification_convert_examples_to_features(data['train'], tokenizer, max_length=MAX_SEQ_LEN,
label_list=label,
output_mode="classification")
valid_dataset = classification_convert_examples_to_features(data['validation'], tokenizer, max_length=MAX_SEQ_LEN,
label_list=label,
output_mode="classification")
test_dataset = classification_convert_examples_to_features(data['test'], tokenizer, max_length=MAX_SEQ_LEN,
label_list=label,
output_mode="classification")
train_dataset = train_dataset.shuffle(100).batch(BATCH_SIZE, drop_remainder=True).repeat(EPOCHS)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
valid_dataset = valid_dataset.batch(EVAL_BATCH_SIZE)
valid_dataset = valid_dataset.prefetch(tf.data.experimental.AUTOTUNE)
test_dataset = test_dataset.batch(TEST_BATCH_SIZE)
test_dataset = test_dataset.prefetch(tf.data.experimental.AUTOTUNE)
config = BertConfig.from_pretrained(pretrained_dir, num_labels=dataset.num_labels)
model = TFBertForSequenceClassification.from_pretrained(pretrained_dir, config=config, from_pt=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE, epsilon=1e-08)
if USE_AMP:
optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, 'dynamic')
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=train_number // BATCH_SIZE,
validation_data=valid_dataset,
validation_steps=eval_number // EVAL_BATCH_SIZE)
loss, accuracy = model.evaluate(test_dataset, steps=test_number // TEST_BATCH_SIZE)
print(loss, accuracy)
if SAVE_MODEL:
saved_model_path = "./saved_models/{}".format(int(time.time()))
model.save(saved_model_path, save_format="tf")
Named Entity Recognition
import time
import tensorflow as tf
from transformers import BertTokenizer, BertConfig
from band.dataset import MSRA_NER
from band.seqeval.callbacks import F1Metrics
from band.model import TFBertForTokenClassification
from band.utils import TrainConfig
from band.progress import NER_Dataset
pretrained_dir = '/home/band/models'
train_config = TrainConfig(epochs=3, train_batch_size=32, eval_batch_size=32, test_batch_size=1, max_length=128,
learning_rate=3e-5, save_model=False)
dataset = MSRA_NER(save_path="/tmp/band")
config = BertConfig.from_pretrained(pretrained_dir, num_labels=dataset.num_labels, return_unused_kwargs=True)
tokenizer = BertTokenizer.from_pretrained(pretrained_dir)
model = TFBertForTokenClassification.from_pretrained(pretrained_dir, config=config, from_pt=True)
ner = NER_Dataset(dataset=dataset, tokenizer=tokenizer, train_config=train_config)
model.compile(optimizer=ner.optimizer, loss=ner.loss, metrics=[ner.metric])
f1 = F1Metrics(dataset.get_labels(), validation_data=ner.valid_dataset, steps=ner.valid_steps)
history = model.fit(ner.train_dataset, epochs=train_config.epochs, steps_per_epoch=ner.test_steps, callbacks=[f1])
loss, accuracy = model.evaluate(ner.test_dataset, steps=ner.test_steps)
if train_config.save_model:
saved_model_path = "./saved_models/{}".format(int(time.time()))
model.save(saved_model_path, save_format="tf")
Question Answering
import time
import tensorflow as tf
from transformers import BertConfig, BertTokenizer
from band.model import TFBertForQuestionAnswering
from band.dataset import Squad
from band.progress import squad_convert_examples_to_features, parallel_squad_convert_examples_to_features
USE_XLA = False
USE_AMP = False
EPOCHS = 1
BATCH_SIZE = 4
EVAL_BATCH_SIZE = 4
TEST_BATCH_SIZE = 1
MAX_SEQ_LEN = 128
LEARNING_RATE = 3e-5
SAVE_MODEL = False
pretrained_dir = "/home/band/models"
tf.config.optimizer.set_jit(USE_XLA)
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP})
dataset = Squad(save_path="/tmp/band")
data, label = dataset.data, dataset.label
train_number, eval_number = dataset.train_examples_num, dataset.eval_examples_num
tokenizer = BertTokenizer.from_pretrained(pretrained_dir)
train_dataset = parallel_squad_convert_examples_to_features(data['train'], tokenizer, max_length=MAX_SEQ_LEN,
doc_stride=128, is_training=True, max_query_length=64)
valid_dataset = parallel_squad_convert_examples_to_features(data['validation'], tokenizer, max_length=MAX_SEQ_LEN,
doc_stride=128, is_training=False, max_query_length=64)
train_dataset = train_dataset.shuffle(100).batch(BATCH_SIZE, drop_remainder=True).repeat(EPOCHS)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
valid_dataset = valid_dataset.batch(EVAL_BATCH_SIZE)
valid_dataset = valid_dataset.prefetch(tf.data.experimental.AUTOTUNE)
config = BertConfig.from_pretrained(pretrained_dir)
model = TFBertForQuestionAnswering.from_pretrained(pretrained_dir, config=config, from_pt=True, max_length=MAX_SEQ_LEN)
print(model.summary())
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE, epsilon=1e-08)
if USE_AMP:
optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, 'dynamic')
loss = {'start_position': tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
'end_position': tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)}
metrics = {'start_position': tf.keras.metrics.SparseCategoricalAccuracy('accuracy'),
'end_position': tf.keras.metrics.SparseCategoricalAccuracy('accuracy')}
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=train_number // BATCH_SIZE,
validation_data=valid_dataset,
validation_steps=eval_number // EVAL_BATCH_SIZE)
if SAVE_MODEL:
saved_model_path = "./saved_models/{}".format(int(time.time()))
model.save(saved_model_path, save_format="tf")
Dataset
For more information about dataset, see
Dataset Name | Language | TASK | Description |
---|---|---|---|
ChnSentiCorp | CN | Text Classification | Binary Classification |
LCQMC | CN | Question Answer Match | Binary Classification |
MSRA_NER | CN | Named Entity Recognition | Sequence Labeling |
Toxic | EN | Text Classification | Multi-label Multi-label |
Thucnews | CN | Text Classification | Multi-class Classification |
SQUAD | EN | Machine Reading Comprehension | Span |
DRCD | CN | Machine Reading Comprehension | Span |
CMRC | CN | Machine Reading Comprehension | Span |
GLUE | EN |
✅ Supported Embeddings and Models
For more information about pretrained models, see
Stargazers over time
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kbert-0.1.2.tar.gz
.
File metadata
- Download URL: kbert-0.1.2.tar.gz
- Upload date:
- Size: 110.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.1.post20191125 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff44054404b0b0acae156d6774374e4faf1adfff0aeb983333f723ede6c6a141 |
|
MD5 | 983618db5f92b52a1805908472331be5 |
|
BLAKE2b-256 | c959dcba51f40ba21184dba4e25dae5528feb35086276032203c68a26be2afe9 |
File details
Details for the file kbert-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: kbert-0.1.2-py3-none-any.whl
- Upload date:
- Size: 171.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.1.post20191125 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51332b477cd244eef9cc4d5bcb9f79e56e3b8a209e206f92f3ac4f729a5c506c |
|
MD5 | 959253343e314f766cac2e509a37245d |
|
BLAKE2b-256 | 97a0108010c2eb1528f34de6e9ea3d2383d0a9b3907764ad951427d173b26da7 |