Skip to main content

Ket Bitwise Simulator Server.

Project description

PyPI AppImage

Ket Bitwise Simulator

Ket Bitwise Simulator (KBW) server is the quantum computer simulator of the Ket Quantum Programming. The simulator executes Ket Quantum Assembly (.kqasm) generated by the libket (and the Ket quantum programming language), using the bitwise representation [arxiv:2004.03560].

Table of contents:

Usage

$ kbw -h
usage: kbw [-h] [--version] [-b] [-p] [-l]

Ket Bitwise Simulator server

optional arguments:
  -h, --help  show this help message and exit
  --version   show program's version number and exit
  -b          Server bind
  -p          Server port
  -l          Extra plugin path

Installation

Available installation methods:

Install using pip

To install using pip runs:

$ pip install kbw

Install from source

Install requirements:

  • C/C++ compiler
  • CMake
  • Java
  • Ninja or GNU Make
  • SWIG
  • cURL
  • unzip

To install from source runs:

$ git clone https://gitlab.com/quantum-ket/kbw.git
$ cd kbw
$ python setup.py install

Ket Bitwise Plugins

To get start developing you own plugin for KBW we recommend modify the example plugin: example.cpp. See https://quantum-ket.gitlab.io/kbw/namespaceket.html for the Ket Bitwise API documentation.

To use your plugin you can reinstall KBW from source or add the compiled plugin to the extra plugin path.

Compile example plugin

$ git clone https://gitlab.com/quantum-ket/kbw.git
$ cd kbw
$ mkdir build
$ cd build 
$ cmake -GNinja ..
$ ninja example

Add plugin to path

$ kbw -l kbw/build/lib

Do not execute KBW inside the project directory or subdirectories.


This project is part of the Ket Quantum Programming, see the documentation for more information https://quantum-ket.gitlab.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kbw-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

kbw-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kbw-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kbw-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kbw-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file kbw-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kbw-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38e0f70def47ed34fe9bc08abb4a00d5605ffb76d218ab64a74669dccecef7a0
MD5 aae5ba4c006b482f8c7f714df1b45a97
BLAKE2b-256 423c4621aecb2272d559fcba198348d83e19a140f9e31818370541a10448ce68

See more details on using hashes here.

File details

Details for the file kbw-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kbw-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23e6a26d63c425ee637959f76f94cbd8e8603419d6830d9d5b8d82c4d1fd98ed
MD5 5f1f8750c7b0feb0620ce0e70dc64917
BLAKE2b-256 122e6b1c16ed55c60e9de2cb734d3121975894230b0b9142a7ad0c5dcbeab66e

See more details on using hashes here.

File details

Details for the file kbw-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: kbw-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 806.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for kbw-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58e24a7c5bc6a398582b5656128faaf2c789571a089adc6a989d62d32b49ca4b
MD5 e5dfe9efc5d27acbd0b4b3ac7eb959ec
BLAKE2b-256 a61aa687baa9f8ebba8f3bde758d0946242a23b76bae2c66ca46800773000a34

See more details on using hashes here.

File details

Details for the file kbw-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: kbw-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 806.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for kbw-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db7a6c9e3398125c2991d11cda08df2a7a8b8c1a1ab06eac9477386abc243a06
MD5 ef89cb333dfbe18d77993fbaaec27adc
BLAKE2b-256 70a982ffae30e549254a08aa2e3fb3bb48cde064b804a80a5c3b5f5809524e2a

See more details on using hashes here.

File details

Details for the file kbw-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kbw-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2965f07b82e999f5684dc3799d9e27587d531b8419c5849f623e67f9fdd9b75
MD5 68a444346b577c01cac4138c09848240
BLAKE2b-256 aed97395e72d630d7b37b7eab1d30f5b221aeb0d0fa7083aaeec4064d16ece08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page