Skip to main content

A Bayesian data analysis library in Python

Project description

KCBO
====

A Bayesian testing framework written in Python.

KCBO Philosophy
---------------

*The goal of KCBO is to provide an easy to use, Bayesian framework to the masses.*

The Bayesian philosophy and framework provide an excellent structure for both asking and answering questions. Bayesian statistics allow us to ask questions in a more natural manner and derive incredibly powerful solutions.

Researchers and analysts shouldn't spend hours reading academic papers and finding which conjugate priors they need, which type of sampler their MCMC should have, or when to use MC or MCMC. Software should take care of that computing and researchers should take care of producing insights.

The world is ready for a good, clean, and easy to use Bayesian framework. The goal of KCBO is to provide that framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kcbo-0.0.1.tar.gz (8.4 kB view details)

Uploaded Source

File details

Details for the file kcbo-0.0.1.tar.gz.

File metadata

  • Download URL: kcbo-0.0.1.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for kcbo-0.0.1.tar.gz
Algorithm Hash digest
SHA256 46f1a6ba2c3687d1b3a9a50b78f3aa87cc638e7f630e4129aee87e6e2cbf22a6
MD5 56ea78d9076ca199f72c0dcb14cae63b
BLAKE2b-256 e97e5e9f7cceb722ad29d1dcf1ba75e3ab0034573c1512276420415c99938ec7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page