Skip to main content

No project description provided

Project description

Dataset for KCC2020: Tutorial on Human Activity Recognition

Install

pip install kcc2020-tutorial-HAR-dataset

How to use

  • This dataset is for the KCC2020 tutorial on human activity recognition.
  • This dataset is originally from UCI's HAPT (Human Activities and Postural Transitions) an modified for KCC 2020 Sensing tutorial.
  • You can download original dataset from the HAPT website (for details of the dataset, see HAPT dataset website).

load_all

  • To download dataset of entire users, use 'load_all().'

  • For example:

from kcc2020 import load_all

entire_datase = load_all()
  • It automatically removes any part of data that has no labels.

  • To obtain data with the removal, please use 'load_all(remove_no_lavels = False).'

load_by_user

  • To download dataset of a specific user, use 'load_by_user(uid).'

  • It returns pandas's DataFrame that contains the dataset of the specific user with given uid.

  • There is 30 users; it returns 'None' if uid is greater than 30.

  • For example:

from kcc2020 import load_by_user

user1_datasett = load_by_user(1)
  • It automatically removes any part of data that has no labels.

  • To obtain data with the removal, please use 'load_by_user(uid, remove_no_lavels = False).'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kcc2020-tutorial-HAR-dataset-0.0.2.tar.gz (2.1 kB view details)

Uploaded Source

File details

Details for the file kcc2020-tutorial-HAR-dataset-0.0.2.tar.gz.

File metadata

  • Download URL: kcc2020-tutorial-HAR-dataset-0.0.2.tar.gz
  • Upload date:
  • Size: 2.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for kcc2020-tutorial-HAR-dataset-0.0.2.tar.gz
Algorithm Hash digest
SHA256 8bc4e864898bc1da1ae56826c913c90411601749ab2e72f46405f9568a1b3bec
MD5 482586b7c60687203c5078e5d555d32f
BLAKE2b-256 52cc60a4b33986b6484218d3ce6a37b9ce0b08d646c1ae8521874d42e2da21c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page