Skip to main content
Help us improve Python packaging – donate today!

Python wrapper for Kcorrect library

Project Description


This package provides Python interface to kcorrect C library by
M. Blanton et al. and described here:




for obtaining kcorrect and how to install it.

This wrapper uses kcorrect version 4.2.

Python and dependencies

This version requires Python 2.7+ and NumPy 1.7+


the usual::

python build

and (may need root privileges) ::

python install

should build the package and install **
into the standard *site-packages* directory.


Note: the environmental variables *KCORRECT_DIR* and
*LD_LIBRARY_PATH* should be set and point to the location
where the kcorrect package is installed, eg::

export KCORRECT_DIR=/usr/local/kcorrect


you can test the package by running::


this will procude two files *coeffs.dat* and

available functions

The following functions are currently available for this version:

o :func:`load_templates`
o :func:`load_filters`
o :func:`fit_coeffs_from_file`
o :func:`fit_coeffs`
o :func:`reconstruct_maggies`
o :func:`reconstruct_maggies_from_files`
o :func:`fit_photoz`
o :func:`fit_photoz_from_file`


The example below uses the data shipped with kcorrect.v4_2.
You can use the module as follow::

>>> import kcorrect, numpy
>>> kcorrect.load_templates()
>>> kcorrect.load_filters()
>>> a=[0.03077382, 1.144068e-08, 5.262234e-08, 8.210213e-08, 8.744532e-08, 1.017738e-07, 6.216309e+16, 3.454767e+17, 1.827409e+17, 1.080889e+16, 3163927000000000.0]
>>> c = kcorrect.fit_coeffs(a)
>>> c
array([ 3.07738204e-02, 2.02254747e-14, 1.49129165e-35,
2.15513887e-06, 6.94462278e-06, 1.78061924e-13], dtype=float32)
>>> m = kcorrect.reconstruct_maggies(c)
>>> m
array([ 3.07738204e-02, 1.44426586e-08, 5.28384980e-08,
8.09117182e-08, 9.51680121e-08, 1.10408600e-07], dtype=float32)

The example above successively loads the module,
loads the default templates, *vmatrix.default.dat*
and *lambda.default.dat*, loads the default filter,
*sdss_filters.dat*, then computes the coeffs and
reconstructs maggies.

To compute the reconstructed maggies at rest-frame with bandpasses
shifted by 0.1, you need first reload the filters with the given
band_shift, then compute the coeffs and the maggies::

>>> kcorrect.load_filters(band_shift=0.1)
>>> m0 = kcorrect.reconstruct_maggies(c, redshift=0.)

If the redshifs, maggies and maggies_invvar are stored
in a file like *sample.dat* found in the *test* directory
of kcorrect package, you can use :func:`fit_coeffs_from_file`
and :func:`reconstruct_maggies_from_files` to perform the

>>> kcorrect.fit_coeffs_from_file('some_file.dat', outfile='output_coeffs.dat')
>>> kcorrect.reconstruct_maggies_from_files('output_coeffs.dat', outfile='computed_maggies.dat')

these produce 2 files *output_coeffs.dat* and *computed_maggies.dat*

To use different templates, you load them as follow::

>>> kcorrect.load_templates(v='vmatrix.goods.dat',l='lambda.goods.dat')

If templates and filters are not loaded before calling the other
functions, error is raised::

>>> kcorrect.fit_coeffs(range(11))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "", line 37, in fit_coeffs
return _kcorrect.fit_coeffs(c)
_kcorrect.error: no filters loaded.

:func:`fit_photoz` and :func:`fit_photoz_from_file` can be used
as follow, after loading the appropriate templates and filter::

>>> p = kcorrect.fit_photoz(a[1:])
>>> p
array([ 1.41886109e-02, 5.18920551e-09, 6.65258128e-36,
2.18073205e-06, 5.97664302e-06, 4.88666385e-14], dtype=float32)

if the data are from a file *photoz.dat*::

>>> fit_photoz('photoz.dat', outfile='photoz.out')

which produces the result to the output file *photoz.out*

Release history Release notifications

History Node


History Node


History Node


History Node


This version
History Node


History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
kcorrect_python-2014.07.25.tar.gz (5.9 kB) Copy SHA256 hash SHA256 Source None Jul 25, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page