We implemented nadaraya waston kernel density and kernel conditional probability estimator using cuda through cupy. It is much faster than cpu version but it requires GPU with high memory.
Project description

kde_gpu
Kernel density estimator using Nadaraya-Watson with GPU (CUDA)
Author
Chen Chen
Running Environment Setup
You have to have cupy installed to be able to use GPU!! See https://github.com/cupy/cupy
Similar to scipy.kde_gaussian and statsmodels.nonparametric.kernel_density.KDEMultivariateConditional, we implemented nadaraya waston kernel density and kernel conditional probability estimator using cuda through cupy. However, it is much faster than cpu version and it maximise the use of GPU memory.
-
Make a folder with name "data" in current directory. Then copy ORL and CroppedYaleB dataset inside. Please make sure you have the following file tree structure:
|--- kde_gpu\
***|--- version.py \
***|--- nadaraya_watson.py \
***|--- conditional_probability.py \
*|--- setup.py \
*|--- example.py \
*|--- README.md \ -
Install
kde_gpu
with following command: (Please usepip3
if the defaultpython
in your computer ispython2
)$ pip install -e .
This command will run setup.py
where we specify the dependencies required to run nmf
. The dependencies we require are:
"scipy>=1.0.0",
"pandas>=0.20.2",
Please note that if the version number of installed package in your machine is lower than the stated version number, pip
will uninstall your out-of-date package and install the one with version number greater than or equal to the stated one in setup.py
.
Example
"""
@author: chen.chen.adl@gmail.com
"""
#import kernel_smoothing
from scipy import stats
import pandas as pd
import cupy as cp
import numpy as np
import time
rv = stats.expon(0,1)
x = rv.rvs(size=10000)
density_real = rv.pdf(x)
t1=time.time()
kde_scipy=stats.gaussian_kde(x.T,bw_method='silverman')
kde_scipy=kde_scipy(x.T)
print(time.time()-t1)
t1=time.time()
kde_cupy=kde(cp.asarray(x.T),bw_method='silverman')
print(time.time()-t1)
df = pd.DataFrame({'x1':x,'kde_scipy':kde_scipy,
'kde_cupy':cp.asnumpy(kde_cupy).squeeze(),'real density':density_real})
df['scipy_mean_absolute_error']=np.abs(df['kde_scipy']-df['real density'])
df['cupy_mean_absolute_error']=np.abs(df['kde_cupy']-df['real density'])
print(df.mean())
rv = stats.truncnorm(-3,2,30,10)
nsample=10000
x = cp.asarray(rv.rvs(nsample))
ycondx = cp.asarray(cp.random.rand(nsample))
y = 10*(ycondx-0.5)+x
cdf_conditional_real = ycondx
df = pd.DataFrame({'y':cp.asnumpy(y),'x':cp.asnumpy(x),'real density':cp.asnumpy(cdf_conditional_real)})
df['nadaraya watson']= kernel_smoothing_ecdf(y,x)
df['nw_error']=np.abs(df['nadaraya watson']-df['real density'])
df.mean()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kde_gpu-0.1.0.tar.gz
.
File metadata
- Download URL: kde_gpu-0.1.0.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0215e21b1b2a2adcf3e91d145e4571bea36367a692220c7f5e7a825cca44031 |
|
MD5 | dd53bc5d48e38575e9b324409514dcb5 |
|
BLAKE2b-256 | d9fe410d24e280428efcbbabaf32f12673d2d868329cb0a70a3544d9bab46b70 |
File details
Details for the file kde_gpu-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: kde_gpu-0.1.0-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d103109fe47e3d0723ff32f7e3669556e4cdb9cdef9891000d8a0fdfead38d8b |
|
MD5 | a30572322f3c8274743685202c43b626 |
|
BLAKE2b-256 | a2335e976fc5e4eece71b16d36280924d99c77d2f58e20dc445ca4eb9b22276e |