Skip to main content

We implemented nadaraya waston kernel density and kernel conditional probability estimator using cuda through cupy. It is much faster than cpu version but it requires GPU with high memory.

Project description



kde_gpu

Kernel density estimator using Nadaraya-Watson with GPU (CUDA)

Author

Chen Chen

Running Environment Setup

You have to have cupy installed to be able to use GPU!! See https://github.com/cupy/cupy

Similar to scipy.kde_gaussian and statsmodels.nonparametric.kernel_density.KDEMultivariateConditional, we implemented nadaraya waston kernel density and kernel conditional probability estimator using cuda through cupy. However, it is much faster than cpu version and it maximise the use of GPU memory.

  1. Make a folder with name "data" in current directory. Then copy ORL and CroppedYaleB dataset inside. Please make sure you have the following file tree structure:
    |--- kde_gpu\
    ***|--- version.py \
    ***|--- nadaraya_watson.py \
    ***|--- conditional_probability.py \
    *|--- setup.py \
    *|--- example.py \
    *|--- README.md \

  2. Install kde_gpu with following command: (Please use pip3 if the default python in your computer is python2)

    $ pip install -e .
    

This command will run setup.py where we specify the dependencies required to run nmf. The dependencies we require are:

       "scipy>=1.0.0",
       "pandas>=0.20.2",

Please note that if the version number of installed package in your machine is lower than the stated version number, pip will uninstall your out-of-date package and install the one with version number greater than or equal to the stated one in setup.py.

Example

"""
@author: chen.chen.adl@gmail.com
"""

#import kernel_smoothing
from scipy import stats
import pandas as pd
import cupy as cp
import numpy as np
import time


rv = stats.expon(0,1)

x = rv.rvs(size=10000)

density_real = rv.pdf(x)

t1=time.time()
kde_scipy=stats.gaussian_kde(x.T,bw_method='silverman')
kde_scipy=kde_scipy(x.T)
print(time.time()-t1)

t1=time.time()
kde_cupy=kde(cp.asarray(x.T),bw_method='silverman')
print(time.time()-t1)



df = pd.DataFrame({'x1':x,'kde_scipy':kde_scipy,
                   'kde_cupy':cp.asnumpy(kde_cupy).squeeze(),'real density':density_real})

df['scipy_mean_absolute_error']=np.abs(df['kde_scipy']-df['real density'])
df['cupy_mean_absolute_error']=np.abs(df['kde_cupy']-df['real density'])
print(df.mean())


rv = stats.truncnorm(-3,2,30,10)
nsample=10000
x = cp.asarray(rv.rvs(nsample))
ycondx = cp.asarray(cp.random.rand(nsample))
y = 10*(ycondx-0.5)+x

cdf_conditional_real = ycondx
df = pd.DataFrame({'y':cp.asnumpy(y),'x':cp.asnumpy(x),'real density':cp.asnumpy(cdf_conditional_real)})

df['nadaraya watson']= kernel_smoothing_ecdf(y,x)
df['nw_error']=np.abs(df['nadaraya watson']-df['real density'])
df.mean()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kde_gpu-0.1.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

kde_gpu-0.1.0-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file kde_gpu-0.1.0.tar.gz.

File metadata

  • Download URL: kde_gpu-0.1.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for kde_gpu-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a0215e21b1b2a2adcf3e91d145e4571bea36367a692220c7f5e7a825cca44031
MD5 dd53bc5d48e38575e9b324409514dcb5
BLAKE2b-256 d9fe410d24e280428efcbbabaf32f12673d2d868329cb0a70a3544d9bab46b70

See more details on using hashes here.

File details

Details for the file kde_gpu-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: kde_gpu-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for kde_gpu-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d103109fe47e3d0723ff32f7e3669556e4cdb9cdef9891000d8a0fdfead38d8b
MD5 a30572322f3c8274743685202c43b626
BLAKE2b-256 a2335e976fc5e4eece71b16d36280924d99c77d2f58e20dc445ca4eb9b22276e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page