Skip to main content

General utility library for Python applications running in Keboola Connection environment

Project description

Python Utility library

Introduction

Build & Test Code Climate PyPI version

The library provides a useful set of utility functions frequently used when creating Python components for Keboola Connection. The utility library should be used in cooperation with the main Python Component library.

The Python Utility library is developed the Keboola Data Services team and is officially supported by Keboola. The library aims to ease the component creation process by removing the necessity to write frequently used functions all over again.

Links

Quick start

Installation

The package can be installed via pip using:

pip install keboola.utils

Structure and functionality

The package currently contains one core module:

  • keboola.utils.date - a set of methods for date manipulation.
  • keboola.utils.helpers
    • a general helper functions and classes that are relevant in Keboola Connection environment.
  • keboola.utils.header_normalizer
    • Different strategies to convert column names to a valid KBC format.

Helpers

The module contains general helper functions and classes that are relevant in Keboola Connection environment.

Date Utilities

The module contains all date related functions, which can be utilized to effective work with dates, when creating components for Keboola Connection.

Initialization

All util functions can be imported from keboola.utils module.

from keboola.utils import *

or

import keboola.utils.date

to import only functions from a certain module.

Getting converted date period from string

The function parse_datetime_interval() allows to parse any string containing date format into a Python datetime; or if strformat parameter is specified, into a datetime formatted string.

The positional arguments period_from and period_to can be specified in relative format (e.g. 3 days ago, 2 months ago, etc.) or in absolute format (e.g. 2020-01-01). For full list of supported formats, please refer to dateparser documentation.

from keboola.utils import *

dt_str_1 = '5 days ago'
dt_str_2 = 'today'
dt_format = '%Y-%m-%d'

start_date, end_date = parse_datetime_interval(dt_str_1, dt_str_2, dt_format)

Generating date period chunks

The function split_dates_to_chunks() allows to split time interval into chunks of specified size.

import keboola.utils.date as dutils
from datetime import date

dt_1 = date(2021, 1, 1)
dt_2 = date(2021, 1, 10)
dt_format = '%Y-%m-%d'

intervals = dutils.split_dates_to_chunks(dt_1, dt_2, intv=2, strformat=dt_format)

for intv in intervals:
    print(intv['start_date'], intv['end_date'])

Usage Example

import keboola.utils.date as dutils

dt_str_1 = '5 days ago'
dt_str_2 = 'today'
dt_format = '%Y-%m-%d'

start_date, end_date = dutils.parse_datetime_interval(dt_str_1, dt_str_2)

intervals = dutils.split_dates_to_chunks(start_date, end_date, intv=2, strformat=dt_format)

for intv in intervals:
    print(intv['start_date'], intv['end_date'])

Header normalizer

This module provides different strategies to normalize CSV column names to a format supported by the Keboola Connection Storage:

Only alphanumeric characters and underscores are allowed in column name. Underscore is not allowed on the beginning.

Example:

import keboola.utils.header_normalizer as hnorm

head_norm = hnorm.get_normalizer(strategy=hnorm.NormalizerStrategy.ENCODER, char_encoder="unicode")
header = ["dactor#fd", "a*ruas$", "48DHBb#@"]
norm_headers = head_norm.normalize_header(header)

# Results in: ['dactor_35_fd', 'a_42_ruas_36_', '48DHBb_35__64_'])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keboola.utils-1.1.0.tar.gz (9.8 kB view hashes)

Uploaded Source

Built Distribution

keboola.utils-1.1.0-py3-none-any.whl (10.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page