Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for high-end CPUs and GPUs, while ensuring compatibility with the original reference implementation (cppEDM).

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Installation

pip install kedm

Citing

Please cite the following paper if you find kEDM useful:

Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021.

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734–741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496–500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm_cuda11x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (923.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (924.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (924.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file kedm_cuda11x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2bbea8424129ba2c6a34ed09cc615c51341afad9742783e103359a61a2fc69a
MD5 8a7b362ba785f72509d4d0e1d3d0ad22
BLAKE2b-256 2ef8f666bfb8e5ff020cdabab419be6522180c91e80f03989af71e854bc09a50

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fc8ca74c9eda8403f5e2ed3c08d0903b00805fe2f009ab389d0040d8c010652
MD5 7636d2eaf4c744f5c2a5c30920f9c6ec
BLAKE2b-256 97e67a35bbf69aaee96f2432184b196bf4f4d986f2ee0fc4305b822c1bfbc9ef

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7bcd092ed3b060a9e366f8b253f8d71a1d2051faf52534014377200be95402b8
MD5 199438e092eb1013e87e42c85ac7f641
BLAKE2b-256 d233b14e521ec213337c709cecbbaa89f517620191846d65469dc62b4f6d5a41

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 043b486ab74d2695a221caecede9c4865e27d69eb24e724d3c102e501993e5f0
MD5 6743b53ffaf0e25c8175985f50f27404
BLAKE2b-256 8f213461160e9699947c22610d8f6f1d9916a3fd2fd3ddcc3f7b78148d35cce8

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 800d2e257d61c3f0ab9c2cafa21c5f98b46cf811b0edc969fe24cf8916eac3ba
MD5 473e9c18830f046d0bc60c1bd82fcbbe
BLAKE2b-256 5e0dda73cd9bf19950ead73766e1b705c84fe4dadf545b8a36df3fc433b649cc

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2bdaf90762ff46588470b9aba2fbcb279087695e11d28e25e550ee93dc10819
MD5 3f7ac2336b818615b46d93b1d529ee84
BLAKE2b-256 80ab587905cca118abd2ef2d6b29eeeeb82bb626b1bf03e0fb2aa5e679eae74b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page