Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for high-end CPUs and GPUs, while ensuring compatibility with the original reference implementation (cppEDM).

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Installation

CPU (Linux and macOS)

pip3 install kedm

NVIDIA GPU (CUDA 11.2 or later)

pip3 install kedm-11x

NVIDIA GPU (CUDA 12.0 or later)

pip3 install kedm-12x

Citing

Please cite the following papers if you find kEDM useful:

  • Keichi Takahashi, Kohei Ichikawa, Joseph Park, Gerald M. Pao, “Scalable Empirical Dynamic Modeling with Parallel Computing and Approximate k-NN Search,” IEEE Access, vol. 11, pp. 68171–68183, Jun. 2023. 10.1109/ACCESS.2023.3289836
  • Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021. 10.1145/3437359.3465571

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734–741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496–500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm_cuda11x-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file kedm_cuda11x-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a98f54a51512bd781a8198ebf54ebf741c4b5a552e87411b8220878c5ff03ed
MD5 3011173614bb64029a64bb25622202d8
BLAKE2b-256 36aba00f365e570c9bc14c7ff912dec25796e422d3028b2e42ac96beb0b0f93a

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb9f83f86a254d4a0ff3091fe86a885bd8537a6aaa8b66ef553634a05019c51a
MD5 ee4f9a7e2d5f9372537d2fa72f7f28ab
BLAKE2b-256 3bf2572e548a51a98bc735f7cfa60c854e4fcd8851d05072059296f369f92690

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd14ac9bb452f1184155949f9675fc5b51f42af1c9de397b715cc471ae0e6c28
MD5 05182fcfb424f40bfdf59e0c4f019165
BLAKE2b-256 028b892f04b48654168c883288dfe105a949e7e18c75985e8e659a6be9835690

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90f40774232fc0c519fecbfa74c78f167da268c3a9bca2ed3222bc2cd2733b21
MD5 4807457cd962999b951c54e3b8e7e627
BLAKE2b-256 fc0ff6b049c32d80e8d0c75600ced8cb45c3b25ecf204e79c881a401c7c963f6

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 161ec09ecb35fae68ebd6c554d6ad02deb740fc4fe1bf4176bcf05bbd35e83f7
MD5 b34e594e5a1ccd91436713a28d8406ce
BLAKE2b-256 0c7c989d74e0331ac04116de1ce26e0094944760b2f79c73c7d8d1d555520e82

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0945e0d5a662ff627d46a90af148a44d177590c1a923f6240609962b5741b560
MD5 39cd251492ed4ea54ab3d471e05f5e44
BLAKE2b-256 a67f081728e1b7e65e48b75c59a977031327c629e1a6b8fafd20f57a9d76931a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page