Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for high-end CPUs and GPUs, while ensuring compatibility with the original reference implementation (cppEDM).

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Installation

CPU (Linux and macOS)

pip3 install kedm

NVIDIA GPU (CUDA 11.2 or later)

pip3 install kedm-11x

NVIDIA GPU (CUDA 12.0 or later)

pip3 install kedm-12x

Citing

Please cite the following papers if you find kEDM useful:

  • Keichi Takahashi, Kohei Ichikawa, Joseph Park, Gerald M. Pao, “Scalable Empirical Dynamic Modeling with Parallel Computing and Approximate k-NN Search,” IEEE Access, vol. 11, pp. 68171–68183, Jun. 2023. 10.1109/ACCESS.2023.3289836
  • Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021. 10.1145/3437359.3465571

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734–741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496–500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm_cuda11x-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm_cuda11x-0.6.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file kedm_cuda11x-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c027b9fcfa86407e8fb2da72db902016d5f48aba14c448bdeb415813f5976664
MD5 9327098a4c1d74ddebd369356da95662
BLAKE2b-256 32e7bc9bd6436358d6a3b3958d189cde303e333e2f01a3950d4fa5a412b649d2

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d71272873d313ba3b2e179dba8de23a26b7e65affb41c6215b5cdb9c7e839377
MD5 d9c20cd23d6677d48f8232b82dd0d395
BLAKE2b-256 4f92c6aeb8f5350dd2660dabd95e5fdd6b02db2dcaf2c92ca27c5b7eac7aa76a

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e244d6e686c596a3812424098c0a418d7a4532e77d936635c85135b0c27ff419
MD5 49c07cb25586935bc1c191bc84ee899e
BLAKE2b-256 4fcb18afa16e7a83fdefb457589932ab55168bd94923dab592881d0aabd87f33

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0dc5de397b4a14fd76bd8992632faa2cf81627a27c27e4cc724bd4e7c8dc44b0
MD5 00c1f6ab91d64c1ef0a74c9fbda29c52
BLAKE2b-256 64b901f44016c98c6f948506a3a1bd1f8852642ea784d9354aea7117baea8118

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d5c79a3b2ad8df9cff2fbe9511a5fab74f4a1c2fc64a486cada7c57dfbd9430
MD5 582f89c8a4d733b4c25abe15bab676cf
BLAKE2b-256 181771e46ddf963a8444be2ce71a7a1c2264ffdc0810c4b4ed59a87c71df6e5c

See more details on using hashes here.

File details

Details for the file kedm_cuda11x-0.6.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda11x-0.6.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 447fab0aef7029aded530a72410dd62bc22c030a8e67837a610085c296f96348
MD5 d1bffc05b782047db49729cc46195a11
BLAKE2b-256 25b380a350023955b2b465a06cc425bf353df38fde0cafcc48fca94e17d53bac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page