Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for high-end CPUs and GPUs, while ensuring compatibility with the original reference implementation (cppEDM).

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Installation

pip install kedm

Citing

Please cite the following paper if you find kEDM useful:

Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021.

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734–741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496–500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm_cuda12x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kedm_cuda12x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm_cuda12x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (962.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm_cuda12x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm_cuda12x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (963.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm_cuda12x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (963.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file kedm_cuda12x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1625c1613d1938942899f2d985382c96ded5b3083906d522018d439f2adb94be
MD5 6a9058f2f9e2ef744397c0f7ee8de2e9
BLAKE2b-256 5415826101342889459ab004a22ba93a57fa98924c32f6031abe1dd9ebc8390a

See more details on using hashes here.

File details

Details for the file kedm_cuda12x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11eaadb57347f41699f63eea9ad62806d661d8449a332d2f63335b2e77410677
MD5 cb8ddd27aa551c5c9aff786698f2b5ea
BLAKE2b-256 a1aa6f33066e41ccadbe20ccc5fe16ee468ebee1363faa8a24350e616ddd96e5

See more details on using hashes here.

File details

Details for the file kedm_cuda12x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a089d856d89ac90f2a1134abb38059cb211aeca4887bb24d3cbca64b3ba01727
MD5 f73ad8eaa17e70eb78c3aa3b7bfadec2
BLAKE2b-256 95e3953a8ea9d6cd87b29372eec82691f7b36cbd57393b994e0a2fe43cca5c5c

See more details on using hashes here.

File details

Details for the file kedm_cuda12x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7a8e79a350b816443673161aa9834488b803261a9d769189f2af8c384695aa8
MD5 f947b98234922f60a12174726b8009e4
BLAKE2b-256 6b7bead6b2f649a54984038e7ba47c9ea9b2cd74bc5697ae0113080f8361cae7

See more details on using hashes here.

File details

Details for the file kedm_cuda12x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bbb9d468c77b8958e4212e2926d95fc68b823a5e63fc052b7aa9943793469a9
MD5 189bf53d1570f6cb5dccf5f954e69f0f
BLAKE2b-256 0c698c794b55e9106344f115a73eb3f947bdf34dc7bb0a8450c4729d860d30b3

See more details on using hashes here.

File details

Details for the file kedm_cuda12x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm_cuda12x-0.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6b05fe11c8763c7b95033795a51dc689f7daf57fe32c1cdf0427b801fd3ed92
MD5 03aabd1b1978428a5f48645505d91afb
BLAKE2b-256 7913aa7addd9af7b746687c1e02c4d37f77d56c579950966a48a2ab13c75b25c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page