Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for HPC hardware (Intel Xeon, AMD EPYC, NVIDIA GPUs, Fujitsu A64FX, etc.) while ensuring compatibility with the reference implementation (cppEDM)

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Citing

Please cite the following paper if you find kEDM useful:

Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021.

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734-741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496-500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm-0.3.0-cp39-cp39-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9

kedm-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

kedm-0.3.0-cp38-cp38-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.8

kedm-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

kedm-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.7m

kedm-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

kedm-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.6m

kedm-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file kedm-0.3.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc316337afde7698f3145f1c23326a24968b176b5d93b4f03dc2b0197ea2155d
MD5 e0618f3837e5af12a53fe61ab2e8c81c
BLAKE2b-256 c1ca48c58a4c2fac524e18d14854b3c15caba431a63136a575bf1ddac25727f9

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41298f3eb127261d370afd068fec4dbf1a72e53e79fc2c5f958724bf8f9b14ac
MD5 0b7fb8e9a78356885ef02e54fa82d34c
BLAKE2b-256 138bf5510ee6b559bfa294acd5529361537f50cb555b3d221fd295ed095ed86e

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 520fea6536b17069b0d707b2afb3e88a61e95047fd6af9c35b2fb8ff44131264
MD5 649c4cbfaf3261c203d584c6aa845f50
BLAKE2b-256 a7bf83a23e30a0c882cd416be5fe5a1c2082ad7b3582737520ccb9a4bdb4e4bf

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e44143d9b0e1703b6a7c184b54f0b7e7195374811cf3f20b5acdf2610e9d7560
MD5 2ba868bcbb91d5e7bacbae413a2e001c
BLAKE2b-256 765f2b20bc3b300e48bf37a896d7e798f191a32f8343678ca8a2127f02dd9cc1

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e74f1302d79c656f9f1e1b6084a726093b5fae794bae9913a446a2c532f54d68
MD5 6ff92586105f94225afa340b242c5539
BLAKE2b-256 35880d4899d0e4252ccaf913643c19cd9b3e260ea58f230d8158e2280a9ca339

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc2f3f1354c6f5f54ccb409a844e81a776b11e98974a3c421d76b7e6ea534573
MD5 c8d9acb4b95cac6b7540f33e6d655473
BLAKE2b-256 c0da43af6486177398888a9d46040ec1334102302082cacd7345478770ee1fe9

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4789453311444e247c614fb13fe7a6d090d7c9abf0ad94624526d687842ce6e6
MD5 0a8c187dae0ac7b29f623f5909a6d50e
BLAKE2b-256 42075e6bc621b5201abbf594b3640a937342b054e314fe09a95621614448b09a

See more details on using hashes here.

File details

Details for the file kedm-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: kedm-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for kedm-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3337bd4b2701888d6346b2bae35d025ab601a7a43143de4a48061afdabe05935
MD5 1c1f8909529fade7fa73e752db6efa26
BLAKE2b-256 f7f193a88b097ec6bea6fa4fa4c45826e255fb193ea206385b6361fafbd39e99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page