Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for HPC hardware (Intel Xeon, AMD EPYC, NVIDIA GPUs, Fujitsu A64FX, etc.) while ensuring compatibility with the reference implementation (cppEDM)

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Citing

Please cite the following paper if you find kEDM useful:

Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021.

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734-741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496-500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

kedm-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

kedm-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

kedm-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

kedm-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

kedm-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file kedm-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b97d4988afff01558f9f2de2f492da3d53b14291affdfed114e456c4690dc6b
MD5 a0493b207b56ead69ce06da8a1c2f966
BLAKE2b-256 73d922cb2cee9d14b5dbb5a9015e2a62bea061883b08981d7abc27af0a70f009

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f643cb614cbc0a1e17dd7e53f59a5925f490fbce8c493dd242d9aaf1776f0fc
MD5 8c9b686b324ebac9eb47fb7a54222d0e
BLAKE2b-256 0ae30f645e95fab8792351dea43ae790eb487dffa5f028c7f5faea013b7584b0

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 936ab5521b425c59fc48f8616dd30809ee471e27793e63be928fada894eb6fb0
MD5 8a9e5f5d117fd6f216442c65c09d9a84
BLAKE2b-256 7dc82897fd2bc18a9a45f00db775cda29ae4b3b25989a777f09a12cc4a5d8916

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcfb1c293827bb0383967827635ff86968a764c7b6e11000d63487ab2e62daf9
MD5 5560f072165d9c9f82b332e302839539
BLAKE2b-256 d3680a548b5bb8585046ebe6e0b6def0f985ce3282b821e165abc34c2702dd20

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffea1f8cd90c688643553cc1b51eac89b9da2d4678626a525f69112cf3491bb6
MD5 4f2c7ce82a87a9d4cbb81fce4a18272b
BLAKE2b-256 efa5dcb71df26c8179b9a952b944df1d13cbbdb43e265b2e6ebc7ef2f619952e

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdfefe122e33d8224438410a750b4c00a9c00e19be129c19748165499ed16b1e
MD5 69e620e2a5217d542ee5d4bda00c465b
BLAKE2b-256 eda31499ef3786fbe953ab01338e3cef733b70c18f5a4974a79bd4b496b96c31

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6db60476ce80cae3cf90d3b216c1a89da15cc6375d72426dd17d68103ecdceb3
MD5 c5891c5863c9b49f661c0f01cc567f56
BLAKE2b-256 1d79e8ba98bfaabbe52dd08ee38614d7392d6852e875689d6b8997ad3ef01c5a

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8458d375c4d77f07996dadd3586a1a5f631d33f9a1b8ab163efcdda27cecb089
MD5 a2ab3f5116dfc95d7ffd50c696d8ae2b
BLAKE2b-256 cc473a9628d26f710006dc5b7ed71ce8b800b930b79bb2017a5793342290e993

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70b13f4ad6c9e074d8493b416eca1b70527105a88e552d8fc653729918c1e723
MD5 1697e56da3884dc649fe048d4d9556c7
BLAKE2b-256 3e97e00850835287f29e8dd3924d9b673f258c649c5f6da481ce17c37e4edbb8

See more details on using hashes here.

File details

Details for the file kedm-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ead56b8716d584d2ddc6651d3ab09cd94368d0600e7c767e768982393a8dda26
MD5 6b5261570f96a4692b35fe89a1dc703c
BLAKE2b-256 818a5d455314f9eb8b19edec54093f2acba70ebd933313fa2a0787c71ca04a0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page