Skip to main content

A high-performance implementation of the Empirical Dynamic Modeling (EDM) framework

Project description

kEDM

build Documentation Status PyPI version

kEDM (Kokkos-EDM) is a high-performance implementation of the Empirical Dynamical Modeling (EDM) framework. The goal of kEDM is to provide an optimized and parallelized implementation of EDM algorithms for HPC hardware (Intel Xeon, AMD EPYC, NVIDIA GPUs, Fujitsu A64FX, etc.) while ensuring compatibility with the reference implementation (cppEDM)

Following EDM algorithms are currently implemented in kEDM:

  • Simplex projection [1]
  • Sequential Locally Weighted Global Linear Maps (S-Map) [2]
  • Convergent Cross Mapping (CCM) [3]

Citing

Please cite the following paper if you find kEDM useful:

Keichi Takahashi, Wassapon Watanakeesuntorn, Kohei Ichikawa, Joseph Park, Ryousei Takano, Jason Haga, George Sugihara, Gerald M. Pao, "kEDM: A Performance-portable Implementation of Empirical Dynamical Modeling," Practice & Experience in Advanced Research Computing (PEARC 2021), Jul. 2021.

References

  1. George Sugihara, Robert May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," Nature, vol. 344, pp. 734-741, 1990. 10.1038/344734a0
  2. George Sugihara, "Nonlinear forecasting for the classification of natural time series. Philosophical Transactions," Physical Sciences and Engineering, vol. 348, no. 1688, pp. 477–495, 1994. 10.1098/rsta.1994.0106
  3. George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, Stephan Munch, "Detecting Causality in Complex Ecosystems," Science, vol. 338, pp. 496-500, 2012. 10.1126/science.1227079

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

kedm-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

kedm-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

kedm-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

kedm-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

kedm-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

kedm-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

kedm-0.3.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file kedm-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 068c4bd6b1b36bf03c1135a7dfd44aa31fe17fa2ea3c5833fe31ef22f9369604
MD5 e36587b97b6273170c011343a070c560
BLAKE2b-256 a7fdfb2c4f206991601afbc61948448e57f7efc6cca1d0a70782e12673fd4f9f

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61e13a87657d263de95ebafd093364c6e61c3835dce30883bdc44330bc972512
MD5 e64746ff4ff2a227fd40efaf8abfad9c
BLAKE2b-256 afa6316a1ebb8278e268d2d30ab2053b9e6168962927566a008e7d60d251ff1e

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca93920e8ee531a26f9f5bf8a8f74080404b77cf77177b8b24f83b883b9212da
MD5 a985ec92dfdb147e765b52abf138f442
BLAKE2b-256 8b232479102c4433ca447c59f02d054c74447c6ab23e96e518371195ea8a064c

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afcff02451cafdf5cee8757543c46ad4093ad0ee196e0e32651b28c0a6c239ce
MD5 d4875e21bc6aad0a4060013e1d416d47
BLAKE2b-256 09f6ef2f575985535d839c4802e5334149e963b88162d910e4ff84bf4d495f8f

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ff546c90bc326863c40cc291328a84abd864d7260336b0812eb1d11ac463c6f
MD5 247653b28d7d24393a20e522c4ecc801
BLAKE2b-256 fa04c788afda183752a8119aa513d8678e9e47ee1bd4a9e2def02989f6cc7e35

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c737686b567af3ffe4f128f6b5e05c3bcf4e3461d4cc71dfc24561bb9606fcc
MD5 ca5864b7d8dbe4c73099ec0925e253ba
BLAKE2b-256 7444f2338d7df313e765d4f83774c6fea6a7d7ca3ddcd361f7ea52de37ccace6

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 903a810210e03b5e76c2c712591f5cc7d3496cb71af025f9344fa94ed841a347
MD5 540e4abd8c2c45d6aee9cf6b0bd02ddb
BLAKE2b-256 36af71636c864543f7bfe9c32074786fa53155260ea7e1fa6032ceb1cfddcd12

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cca731ad5485efa337c1e16ecf9448e87452228db9d9954bf2be16c778477235
MD5 1b56b19204dfcb3f42ced3537e94bdf7
BLAKE2b-256 6e28ce3cf18d6c08335ecdfb072caec8197a2ac65a16ef5da3bc75a657582626

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6803102ff8620f763bf35f9d092811caa926ea29a40e5a619cf8deee45fa698
MD5 5e33719c54f5dab1f09048a1296d3c25
BLAKE2b-256 f65640e595aaed59b96f4db07aaf0b9f01421e36c031125ed044f81d32ca123e

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3b8edbe1974a57ef2ca89f892cd0d64f44ee2bef3caa1670462a13fd31ceac3
MD5 eb044114106b17c547815ab73839666e
BLAKE2b-256 96ce24a5359a498ce8361b7a56d4e73604026df0411dd41f76b27b5275cc734f

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5e0f64ba1f9acc052ad6c2813a40b07a4923e53925c648e271ccecc8fbd4c0e
MD5 56f96fd15f980ba1ec44e7f65ad7fad7
BLAKE2b-256 3b05d866d66fd8e0454cc6ce5f0d965e7db175f1b3513d8a70ed61d68aac5912

See more details on using hashes here.

File details

Details for the file kedm-0.3.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kedm-0.3.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56b94accc0720d0f38050d93ed586a7233a30f2af3f5cf182bb296f05418fac1
MD5 245dc5b2639980269cb6fbe96b406e35
BLAKE2b-256 240dabb577b335593936486b922fd2d0242d784c1fe0754dfd8e4a0e681b37e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page