Kedro-Accelerator speeds up pipelines by parallelizing I/O in the background.
Project description
Kedro-Accelerator
Kedro pipelines consist of nodes, where an output from one node A can be an input to another node B. The Data Catalog defines where and how Kedro loads and saves these inputs and outputs, respectively. By default, a sequential Kedro pipeline:
- runs node A
- persists the output of A, often to remote storage like Amazon S3
- potentially runs other nodes
- fetches the output of A, loading it back into memory
- runs node B
Persisting intermediate data sets enables partial pipeline runs (e.g. running node B without rerunning node A) and analysis/debugging of these data sets. However, the I/O in steps 2 and 4 above was not necessary to run node B, given the requisite data was already in memory after step 1. Kedro-Accelerator speeds up pipelines by parallelizing this I/O in the background.
How do I install Kedro-Accelerator?
Kedro-Accelerator is a Python plugin. To install it:
pip install kedro-accelerator
How do I use Kedro-Accelerator?
As of Kedro 0.16.4, TeePlugin
—the core of Kedro-Accelerator—will be auto-discovered upon installation. In older versions, hook implementations should be registered with Kedro through the ProjectContext
. Hooks were introduced in Kedro 0.16.0.
Prerequisites
The following conditions must be true for Kedro-Accelerator to speed up your pipeline:
- Your project must use either
SequentialRunner
orParallelRunner
.
Example
The Kedro-Accelerator repository includes the Iris data set example pipeline generated using Kedro 0.16.1. Intermediate data sets have been replaced with custom SlowDataSet
instances to simulate a slow filesystem. You can try different load and save delays by modifying catalog.yml
.
To get started, create and activate a new virtual environment. Then, clone the repository and pip install requirements:
git clone https://github.com/deepyaman/kedro-accelerator.git
cd kedro-accelerator
KEDRO_VERSION=0.17.4 pip install -r src/requirements.txt # Specify your desired Kedro version.
You can compare pipeline execution times with and without TeePlugin
. Kedro-Accelerator also provides CachePlugin
so that you can test performance using CachedDataSet
in asynchronous mode. Assuming parametrized load and save delays of 10 seconds for intermediate datasets, you should see the following results:
Strategy | Command | Total time | Log |
---|---|---|---|
Baseline (i.e. no caching/plugins) | kedro run |
2 minutes | Log |
TeePlugin |
kedro run --hooks kedro_accelerator.plugins.TeePlugin |
10 seconds (saving all outputs) | Log |
CachePlugin (i.e. CachedDataSet ) with is_async=True |
kedro run --async --hooks kedro_accelerator.plugins.CachePlugin |
30 seconds (saving split_data , train_model , and predict node outputs) |
Log |
Prior to Kedro version 0.17.0, prefix extra hooks passed to kedro run
with src.
(e.g. src.kedro_accelerator.plugins.TeePlugin
).
For a more complete discussion of the above benchmarks, see quantumblacklabs/kedro#420 (comment).
What license do you use?
Kedro-Accelerator is licensed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kedro-accelerator-0.3.0.tar.gz
.
File metadata
- Download URL: kedro-accelerator-0.3.0.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d50c5dc19a989e3f743182a73e8c5fab236071d2f664e0582ddf5d49616099e |
|
MD5 | 267b4ca758ed390f1f9bde309ecdf778 |
|
BLAKE2b-256 | 9ac364f4109214021b3e26d78201577fc5fdaa657fde8b1e212cc18c479df045 |
Provenance
File details
Details for the file kedro_accelerator-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: kedro_accelerator-0.3.0-py3-none-any.whl
- Upload date:
- Size: 5.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 818761bceff67c85d691decd2d2b9b639e46871763b21a07ded4858f14c94628 |
|
MD5 | f9f79d20fd4a36cee36f5333edb49ca0 |
|
BLAKE2b-256 | 34bc31746e9594a4af77c693fcdc08e90dbc0e01bffbe970c6ac33b17614721f |