Skip to main content

A set of python modules for anomaly detection

Project description

https://travis-ci.org/Y-oHr-N/kenchi.svg?branch=master https://ci.appveyor.com/api/projects/status/5cjkl0jrxo7gmug0/branch/master?svg=true https://coveralls.io/repos/github/Y-oHr-N/kenchi/badge.svg?branch=master https://codeclimate.com/github/Y-oHr-N/kenchi/badges/gpa.svg https://badge.fury.io/py/kenchi.svg https://readthedocs.org/projects/kenchi/badge/?version=latest

kenchi

This is a set of python modules for anomaly detection.

Requirements

  • Python (>=3.5)

  • matplotlib (>=2.0.2)

  • numpy (>=1.11.2)

  • pandas (>=0.20.3)

  • scipy (>=0.18.1)

  • scikit-learn (>=0.18.0)

Installation

You can install via pip.

pip install kenchi

Usage

import matplotlib.pyplot as plt
import numpy as np
from kenchi.outlier_detection import GaussianOutlierDetector

train_size   = 1000
test_size    = 100
n_outliers   = 10
n_features   = 10
rnd          = np.random.RandomState(0)
mean         = np.zeros(n_features)
cov          = np.eye(n_features)

# Generate the training data
X_train      = rnd.multivariate_normal(
    mean     = mean,
    cov      = cov,
    size     = train_size
)

# Generate the test data that contains outliers
X_test       = np.concatenate([
    rnd.multivariate_normal(
        mean = mean,
        cov  = cov,
        size = test_size - n_outliers
    ),
    rnd.uniform(
        low  = -10.0,
        high = 10.0,
        size = (n_outliers, n_features)
    )
])

# Fit the model according to the given training data
det          = GaussianOutlierDetector().fit(X_train)

# Plot anomaly scores for test samples
det.plot_anomaly_score(X_test)

plt.show()
docs/images/anomaly_score.png

License

The MIT License (MIT)

Copyright (c) 2017 Kon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kenchi-0.5.0.tar.gz (28.0 kB view hashes)

Uploaded Source

Built Distribution

kenchi-0.5.0-py3-none-any.whl (32.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page