A set of python modules for anomaly detection
Project description
kenchi
This is a set of python modules for anomaly detection.
Requirements
Python (>=3.5)
matplotlib (>=2.0.2)
numpy (>=1.11.2)
pandas (>=0.20.3)
scipy (>=0.18.1)
scikit-learn (>=0.18.0)
Installation
You can install via pip.
pip install kenchi
Usage
import matplotlib.pyplot as plt
import numpy as np
from kenchi.outlier_detection import GaussianOutlierDetector
train_size = 1000
test_size = 100
n_outliers = 10
n_features = 10
rnd = np.random.RandomState(0)
mean = np.zeros(n_features)
cov = np.eye(n_features)
# Generate the training data
X_train = rnd.multivariate_normal(
mean = mean,
cov = cov,
size = train_size
)
# Generate the test data that contains outliers
X_test = np.concatenate([
rnd.multivariate_normal(
mean = mean,
cov = cov,
size = test_size - n_outliers
),
rnd.uniform(
low = -10.0,
high = 10.0,
size = (n_outliers, n_features)
)
])
# Fit the model according to the given training data
det = GaussianOutlierDetector().fit(X_train)
# Plot anomaly scores for test samples
det.plot_anomaly_score(X_test)
plt.show()
License
The MIT License (MIT)
Copyright (c) 2017 Kon
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kenchi-0.5.0.tar.gz
(28.0 kB
view hashes)
Built Distribution
kenchi-0.5.0-py3-none-any.whl
(32.6 kB
view hashes)