Skip to main content

AdaBound optimizer in Keras

Project description

Keras AdaBound

Travis Coverage

AdaBound optimizer in Keras.

Install

pip install keras-adabound

Usage

Use the optimizer

from keras_adabound import AdaBound

model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss=model_loss)

Load with custom objects

from keras_adabound import AdaBound

model = keras.models.load_model(model_path, custom_objects={'AdaBound': AdaBound})

About weight decay

The optimizer does not have an argument named weight_decay (as in the official repo) since it can be done by adding L2 regularizers to weights:

import keras

regularizer = keras.regularizers.l2(WEIGHT_DECAY / 2)
for layer in model.layers:
    for attr in ['kernel_regularizer', 'bias_regularizer']:
        if hasattr(layer, attr) and layer.trainable:
            setattr(layer, attr, regularizer)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-adabound-0.6.0.tar.gz (5.5 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page