Skip to main content

adaptive-softmax implemented in Keras

Project description

Keras Adaptive Softmax

Travis Coverage Version Downloads License

[中文|English]

Install

pip install keras-adaptive-softmax

Usage

Generally, AdaptiveEmbedding and AdaptiveSoftmax should be used together. AdaptiveEmbedding provides variable length embeddings, while AdaptiveSoftmax calculates the similarities between the outputs and the generated embeddings.

import keras
from keras_adaptive_softmax import AdaptiveEmbedding, AdaptiveSoftmax

input_layer = keras.layers.Input(shape=(None,))
embed_layer = AdaptiveEmbedding(
    input_dim=30,
    output_dim=32,
    cutoffs=[5, 15, 25],
    div_val=2,
    return_embeddings=True,
    return_projections=True,
    mask_zero=True,
)(input_layer)
dense_layer = keras.layers.Dense(
    units=32,
    activation='tanh',
)(embed_layer[0])
softmax_layer = AdaptiveSoftmax(
    input_dim=32,
    output_dim=30,
    cutoffs=[5, 15, 25],
    div_val=2,
    bind_embeddings=True,
    bind_projections=True,
)([dense_layer] + embed_layer[1:])
model = keras.models.Model(inputs=input_layer, outputs=softmax_layer)
model.compile('adam', 'sparse_categorical_crossentropy')
model.summary()

cutoffs and div_val controls the length of embeddings for each token. Suppose we have 30 distinct tokens, in the above example:

  • The lengths of the embeddings of the first 5 tokens are 32
  • The lengths of the embeddings of the next 10 tokens are 16
  • The lengths of the embeddings of the next 10 tokens are 8
  • The lengths of the embeddings of the last 5 tokens are 4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-adaptive-softmax-0.3.0.tar.gz (16.3 kB view details)

Uploaded Source

File details

Details for the file keras-adaptive-softmax-0.3.0.tar.gz.

File metadata

  • Download URL: keras-adaptive-softmax-0.3.0.tar.gz
  • Upload date:
  • Size: 16.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for keras-adaptive-softmax-0.3.0.tar.gz
Algorithm Hash digest
SHA256 352ab8cfe9018d997147bd030d00b4876759a4aa7729025f5b21fe538632056e
MD5 13c0f1b803e53ff8d1f4fe503c6f2f8f
BLAKE2b-256 c5273ed5db39f747c92385838a581797f77f2073bba8cc512b6147213f4f3905

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page