Batch Correlation Regularizer for TF2/Keras
Project description
keras-bcr : Batch Correlation Regularizer for TF2/Keras
The batch correlation regularization (BCR) technique adds a penalty loss if the inputs and outputs before the skip-connection of a specific feature element are correlated. The correlation coefficients are computed for each feature element seperatly across the current batch.
Usage
from keras_bcr import BatchCorrRegularizer
import tensorflow as tf
# The BCR layer is added before the addition of the skip-connection
def build_resnet_block(inputs, units=64, activation="gelu",
dropout=0.4, bcr_rate=0.1):
h = tf.keras.layers.Dense(units=units)(inputs)
h = h = tf.keras.layers.Activation(activation=activation)(h)
h = tf.keras.layers.Dropout(rate=dropout)(h)
h = BatchCorrRegularizer(bcr_rate=bcr_rate)([h, inputs]) # << HERE
outputs = tf.keras.layers.Add()([h, inputs])
return outputs
# An model with 3 ResNet blocks
def build_model(input_dim):
inputs = tf.keras.Input(shape=(input_dim,))
h = build_resnet_block(inputs, units=input_dim)
h = build_resnet_block(h, units=input_dim)
outputs = build_resnet_block(h, units=input_dim)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
INPUT_DIM = 64
model = build_model(input_dim=INPUT_DIM)
model.compile(optimizer=tf.keras.optimizers.Adam(), loss="mean_squared_error")
BATCH_SZ = 128
X_train = tf.random.normal([BATCH_SZ, INPUT_DIM])
y_train = tf.random.normal([BATCH_SZ])
history = model.fit(X_train, y_train, verbose=1, epochs=2)
Appendix
Installation
The keras-bcr
git repo is available as PyPi package
pip install keras-bcr
pip install git+ssh://git@github.com/ulf1/keras-bcr.git
Install a virtual environment
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir
(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv
. Use an absolute path without whitespaces.)
Python commands
- Jupyter for the examples:
jupyter lab
- Check syntax:
flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
- Run Unit Tests:
PYTHONPATH=. pytest
Publish
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Acknowledgements
The "Evidence" project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 433249742 (GU 798/27-1; GE 1119/11-1).
Maintenance
- till 31.Aug.2023 (v0.2.0) the code repository was maintained within the DFG project 433249742
- since 01.Sep.2023 (v0.3.0) the code repository is maintained by Ulf Hamster.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-bcr-0.3.0.tar.gz
.
File metadata
- Download URL: keras-bcr-0.3.0.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.9.6 requests/2.31.0 setuptools/59.6.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52d3e7b4ddbd5b9a9c36f49c863226c5e7e295b40177b8ad2a814a86e2e071e2 |
|
MD5 | 3124e399404890e609994c82a57682c9 |
|
BLAKE2b-256 | c6f6c07d2e1e3f0d147571d27406b7999a256082bbcfe02642d2afa72656a8f9 |