Skip to main content

Batch Correlation Regularizer for TF2/Keras

Project description

PyPI version PyPi downloads

keras-bcr : Batch Correlation Regularizer for TF2/Keras

The batch correlation regularization (BCR) technique adds a penalty loss if the inputs and outputs before the skip-connection of a specific feature element are correlated. The correlation coefficients are computed for each feature element seperatly across the current batch.

Usage

from keras_bcr import BatchCorrRegularizer
import tensorflow as tf

# The BCR layer is added before the addition of the skip-connection
def build_resnet_block(inputs, units=64, activation="gelu",
                       dropout=0.4, bcr_rate=0.1):
    h = tf.keras.layers.Dense(units=units)(inputs)
    h = h = tf.keras.layers.Activation(activation=activation)(h)
    h = tf.keras.layers.Dropout(rate=dropout)(h)
    h = BatchCorrRegularizer(bcr_rate=bcr_rate)([h, inputs])  # << HERE
    outputs = tf.keras.layers.Add()([h, inputs])
    return outputs

# An model with 3 ResNet blocks
def build_model(input_dim):
    inputs = tf.keras.Input(shape=(input_dim,))
    h = build_resnet_block(inputs, units=input_dim)
    h = build_resnet_block(h, units=input_dim)
    outputs = build_resnet_block(h, units=input_dim)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    return model

INPUT_DIM = 64
model = build_model(input_dim=INPUT_DIM)
model.compile(optimizer=tf.keras.optimizers.Adam(), loss="mean_squared_error")

BATCH_SZ = 128
X_train = tf.random.normal([BATCH_SZ, INPUT_DIM])
y_train = tf.random.normal([BATCH_SZ])

history = model.fit(X_train, y_train, verbose=1, epochs=2)

Appendix

Installation

The keras-bcr git repo is available as PyPi package

pip install keras-bcr
pip install git+ssh://git@github.com/ulf1/keras-bcr.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab
  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: PYTHONPATH=. pytest

Publish

python setup.py sdist 
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Acknowledgements

The "Evidence" project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 433249742 (GU 798/27-1; GE 1119/11-1).

Maintenance

  • till 31.Aug.2023 (v0.2.0) the code repository was maintained within the DFG project 433249742
  • since 01.Sep.2023 (v0.3.0) the code repository is maintained by Ulf Hamster.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-bcr-0.3.0.tar.gz (8.2 kB view details)

Uploaded Source

File details

Details for the file keras-bcr-0.3.0.tar.gz.

File metadata

  • Download URL: keras-bcr-0.3.0.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.9.6 requests/2.31.0 setuptools/59.6.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.10.6

File hashes

Hashes for keras-bcr-0.3.0.tar.gz
Algorithm Hash digest
SHA256 52d3e7b4ddbd5b9a9c36f49c863226c5e7e295b40177b8ad2a814a86e2e071e2
MD5 3124e399404890e609994c82a57682c9
BLAKE2b-256 c6f6c07d2e1e3f0d147571d27406b7999a256082bbcfe02642d2afa72656a8f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page