Train the Bi-LM model and use it as a feature extraction method
Project description
Keras Bi-LM
Introduction
The repository contains a class for training a bidirectional language model that extracts features for each position in a sentence.
Install
pip install keras-bi-lm
Usage
Train and save the Bi-LM model
Before using it as a feature extraction method, the language model must be trained on a large corpora.
from keras_bi_lm import BiLM
sentences = [
['All', 'work', 'and', 'no', 'play'],
['makes', 'Jack', 'a', 'dull', 'boy', '.'],
]
token_dict = {
'': 0, '<UNK>': 1, '<EOS>': 2,
'all': 3, 'work': 4, 'and': 5, 'no': 6, 'play': 7,
'makes': 8, 'a': 9, 'dull': 10, 'boy': 11, '.': 12,
}
token_dict_rev = {v: k for k, v in token_dict.items()}
inputs, outputs = BiLM.get_batch(sentences,
token_dict,
ignore_case=True,
unk_index=token_dict['<UNK>'],
eos_index=token_dict['<EOS>'])
bi_lm = BiLM(token_num=len(token_dict), embedding_dim=10, rnn_units=10)
bi_lm.model.summary()
bi_lm.fit(np.repeat(inputs, 2 ** 12, axis=0),
[
np.repeat(outputs[0], 2 ** 12, axis=0),
np.repeat(outputs[1], 2 ** 12, axis=0),
],
epochs=5)
bi_lm.save_model('bi_lm.h5')
BiLM()
The core class that contains the model to be trained and used. Key parameters:
token_num
: Number of words or characters.embedding_dim
: The dimension of embedding layer.rnn_layer_num
: The number of stacked bidirectional RNNs.rnn_units
: An integer or a list representing the number of units of RNNs in one direction.rnn_keep_num
: How many layers are used for predicting the probabilities of the next word.rnn_type
: Type of RNN, 'gru' or 'lstm'.
BiLM.get_batch()
A helper function that converts sentences to batch inputs and outputs for training the model.
sentences
: A list of list of tokens.token_dict
: The dict that maps a token to an integer.<UNK>
and<EOS>
should be preserved.ignore_case
: Whether ignoring the case of the token.unk_index
: The index for unknown token.eos_index
: The index for ending of sentence.
Load and use the Bi-LM model
from keras_bi_lm import BiLM
bi_lm = BiLM(model_path='bi_lm.h5') # or `bi_lm.load_model('bi_lm.h5')`
input_layer, output_layer = bi_lm.get_feature_layers()
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.summary()
The output_layer
is the time-distributed feature and all the parameters in the layers of the model are not trainable.
Use ELMo-like Weighted Sum of Trained Layers
from keras_bi_lm import BiLM
bi_lm = BiLM(token_num=20000,
embedding_dim=300,
rnn_layer_num=3,
rnn_keep_num=4,
rnn_units=300,
rnn_type='lstm',
use_normalization=True)
# ...
# Train the Bi-LM model
# ...
input_layer, output_layer = bi_lm.get_feature_layers(use_weighted_sum=True)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.summary()
When rnn_keep_num
is greater than rnn_layer_num
, the embedding layer is also used for weighting.
Demo
See demo
directory:
cd demo
./get_data.sh
pip install -r requirements.txt
python setiment_analysis.py
Citation
Just cite the paper you've seen.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-bi-lm-0.25.0.tar.gz
.
File metadata
- Download URL: keras-bi-lm-0.25.0.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 049e1e5f4064c25addb71242aa15fb21d1d94db9477227ec0a55bb2180ba322d |
|
MD5 | a82afc600035f1963f0a2ec7453f4a7f |
|
BLAKE2b-256 | f9018f20771aff57165e6f981221e58e5114270462309c4920f689c608feafbf |