Add a regularization if the features/columns/neurons the hidden layer or output layer should be correlated. The vector with target correlation coefficient is computed before the optimization, and compared with correlation coefficients computed across the batch examples.
Project description
keras-cor : Correlated Outputs Regularization
Add a regularization if the features/columns/neurons the hidden layer or output layer should be correlated. The vector with target correlation coefficient is computed before the optimization, and compared with correlation coefficients computed across the batch examples.
Usage
See demo notebook
from keras_cor import CorrOutputsRegularizer
import tensorflow as tf
# Simple regression NN
def build_mymodel(input_dim, target_corr, cor_rate=0.1,
activation="sigmoid", output_dim=3):
inputs = tf.keras.Input(shape=(input_dim,))
h = tf.keras.layers.Dense(units=output_dim)(inputs)
h = tf.keras.layers.Activation(activation)(h)
outputs = CorrOutputsRegularizer(target_corr, cor_rate)(h) # <= HERE
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
# Gneerate toy dataset
BATCH_SZ = 128
INPUT_DIM = 64
OUTPUT_DIM = 3
X_train = tf.random.normal([BATCH_SZ, INPUT_DIM])
y_train = tf.random.normal([BATCH_SZ, OUTPUT_DIM])
# Normally you should comput `target_corr` based on your target outputs `y_train`
# e.g., target_corr = tf.constant(y_train)
# However, you can also use subjective correlations (aka expert opinions), e.g.,
target_corr = tf.constant([.5, -.4, .9])
# Optimization
model = build_mymodel(input_dim=INPUT_DIM, target_corr=target_corr, output_dim=OUTPUT_DIM)
model.compile(optimizer=tf.keras.optimizers.Adam(), loss="mean_squared_error")
history = model.fit(X_train, y_train, verbose=1, epochs=2)
# Inference
yhat = model.predict(X_train)
rhos = pearson_vec(yhat)
rhos
Appendix
Installation
The keras-cor
git repo is available as PyPi package
pip install keras-cor
pip install git+ssh://git@github.com/ulf1/keras-cor.git
Install a virtual environment
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir
(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv
. Use an absolute path without whitespaces.)
Python commands
- Jupyter for the examples:
jupyter lab
- Check syntax:
flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
- Run Unit Tests:
PYTHONPATH=. pytest
Publish
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-cor-0.2.0.tar.gz
.
File metadata
- Download URL: keras-cor-0.2.0.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.9.6 requests/2.31.0 setuptools/59.6.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59de74c7cf8e7626e549a9567467f6a504b66a07631fb5b0897ecf5ea9d2dfef |
|
MD5 | d1e4f83a0d4a63377e1f7aba6b9e597b |
|
BLAKE2b-256 | 354fe26253b905f97f5d944ca56a8434097a1b709be759f9f37ff9a1fa99c963 |