A more elegant and convenient CRF built on tensorflow-addons.
Project description
keras-crf
A more elegant and convenient CRF built on tensorflow-addons.
Python Compatibility is limited to tensorflow/addons, you can check the compatibility from it's home page.
Installation
pip install keras-crf
Usage
Here is an example to show you how to build a CRF model easily:
import tensorflow as tf
from keras_crf import CRFModel
# build backbone model, you can use large models like BERT
sequence_input = tf.keras.layers.Input(shape=(None,), dtype=tf.int32, name='sequence_input')
outputs = tf.keras.layers.Embedding(21128, 128)(sequence_input)
outputs = tf.keras.layers.Dense(256)(outputs)
base = tf.keras.Model(inputs=sequence_input, outputs=outputs)
# build CRFModel, 5 is num of tags
model = CRFModel(base, 5)
# no need to specify a loss for CRFModel, model will compute crf loss by itself
model.compile(
optimizer=tf.keras.optimizers.Adam(3e-4)
metrics=['acc'],
)
model.summary()
# you can now train this model
model.fit(dataset, epochs=10, callbacks=None)
The model summary:
Model: "crf_model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
sequence_input (InputLayer) [(None, None)] 0
__________________________________________________________________________________________________
embedding (Embedding) (None, None, 128) 2704384 sequence_input[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, None, 256) 33024 embedding[0][0]
__________________________________________________________________________________________________
crf (CRF) [(None, None), (None 1320 dense[0][0]
__________________________________________________________________________________________________
decode_sequence (Lambda) (None, None) 0 crf[0][0]
__________________________________________________________________________________________________
potentials (Lambda) (None, None, 5) 0 crf[0][1]
__________________________________________________________________________________________________
sequence_length (Lambda) (None,) 0 crf[0][2]
__________________________________________________________________________________________________
kernel (Lambda) (5, 5) 0 crf[0][3]
==================================================================================================
Total params: 2,738,728
Trainable params: 2,738,728
Non-trainable params: 0
__________________________________________________________________________________________________
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
keras_crf-0.3.0.tar.gz
(7.7 kB
view details)
Built Distribution
File details
Details for the file keras_crf-0.3.0.tar.gz
.
File metadata
- Download URL: keras_crf-0.3.0.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a291bef9941cc45c675a31bd68a8548cf2f851d22c1769a9cd292ae2cab6746 |
|
MD5 | 2da3af98c836c83cb4d9d6cddc86656a |
|
BLAKE2b-256 | c8e32dbacbfcccce3afd37910896f7dfbea6eed3e72659e5de97393d4cc395d4 |
File details
Details for the file keras_crf-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: keras_crf-0.3.0-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b36e1fe8817bf8bae64049f744486c10ffb4c1fdf22232b9326b7c85c1919f2 |
|
MD5 | 2619109d5e5ed45210cfc10c1b17f73a |
|
BLAKE2b-256 | ae31053c867acd214e0b436d8b9600d1d6904c7d05c8a553764b82e1815d03c9 |