Skip to main content

A more elegant and convenient CRF built on tensorflow-addons.

Project description

keras-crf

Python package PyPI version Python

A more elegant and convenient CRF built on tensorflow-addons.

Python Compatibility is limited to tensorflow/addons, you can check the compatibility from it's home page.

Installation

pip install keras-crf

Usage

Here is an example to show you how to build a CRF model easily:

import tensorflow as tf

from keras_crf import CRFModel

# build backbone model, you can use large models like BERT
sequence_input = tf.keras.layers.Input(shape=(None,), dtype=tf.int32, name='sequence_input')
outputs = tf.keras.layers.Embedding(21128, 128)(sequence_input)
outputs = tf.keras.layers.Dense(256)(outputs)
base = tf.keras.Model(inputs=sequence_input, outputs=outputs)

# build CRFModel, 5 is num of tags
model = CRFModel(base, 5)

# no need to specify a loss for CRFModel, model will compute crf loss by itself
model.compile(
    optimizer=tf.keras.optimizers.Adam(3e-4)
    metrics=['acc'],
    )
model.summary()

# you can now train this model
model.fit(dataset, epochs=10, callbacks=None)

The model summary:

Model: "crf_model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
sequence_input (InputLayer)     [(None, None)]       0                                            
__________________________________________________________________________________________________
embedding (Embedding)           (None, None, 128)    2704384     sequence_input[0][0]             
__________________________________________________________________________________________________
dense (Dense)                   (None, None, 256)    33024       embedding[0][0]                  
__________________________________________________________________________________________________
crf (CRF)                       [(None, None), (None 1320        dense[0][0]                      
__________________________________________________________________________________________________
decode_sequence (Lambda)        (None, None)         0           crf[0][0]                        
__________________________________________________________________________________________________
potentials (Lambda)             (None, None, 5)      0           crf[0][1]                        
__________________________________________________________________________________________________
sequence_length (Lambda)        (None,)              0           crf[0][2]                        
__________________________________________________________________________________________________
kernel (Lambda)                 (5, 5)               0           crf[0][3]                        
==================================================================================================
Total params: 2,738,728
Trainable params: 2,738,728
Non-trainable params: 0
__________________________________________________________________________________________________

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras_crf-0.3.0.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

keras_crf-0.3.0-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file keras_crf-0.3.0.tar.gz.

File metadata

  • Download URL: keras_crf-0.3.0.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for keras_crf-0.3.0.tar.gz
Algorithm Hash digest
SHA256 6a291bef9941cc45c675a31bd68a8548cf2f851d22c1769a9cd292ae2cab6746
MD5 2da3af98c836c83cb4d9d6cddc86656a
BLAKE2b-256 c8e32dbacbfcccce3afd37910896f7dfbea6eed3e72659e5de97393d4cc395d4

See more details on using hashes here.

File details

Details for the file keras_crf-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: keras_crf-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for keras_crf-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3b36e1fe8817bf8bae64049f744486c10ffb4c1fdf22232b9326b7c85c1919f2
MD5 2619109d5e5ed45210cfc10c1b17f73a
BLAKE2b-256 ae31053c867acd214e0b436d8b9600d1d6904c7d05c8a553764b82e1815d03c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page